The crystal structure, stability, electronic structure, and magnetism of two-dimensional transition metal chalcogenides compounds, MX2-MX-MX2 (M = V, Cr, Mn, and Fe; X = S, Se, and Te), were systematically investigated using first-principles calculations based on the density functional theory (DFT). Furthermore, the magnetic coupling mechanisms of these materials were analyzed. The results show that the formation energies of these compounds are negative, indicating that the compounds can be fabricated experimentally. MnS2-MnS-MnS2 and MnSe2-MnSe-MnSe2 exhibit ferromagnetic half-metal properties, whereas CrS2-CrS-CrS2 transforms into a ferromagnetic half-metal under applied stress.