This study was conducted to evaluate the effects of an 8-week altitude training on erythropoiesis, iron metabolism, and aerobic capacity in trained rowers. Twenty-eight trained rowers were divided into the altitude training (AT) and sea-level training (ST) groups. During the 8-week training camp, the training plan and load were similar in both groups. VO2peak, red blood cell count (RBC), reticulocyte% (RET%), hemoglobin (Hgb), and concentrations of serum erythroferrone (ERFE), ferritin (FER), and soluble transferrin receptor (sTfR) were measured before and after the 8-week training camp. It found that (1) compared with the pre-value, VO2peak and VO2peak to body mass (RVO2peak) increased significantly after the 8-week training in the AT group. No obvious differences in VO2peak and RVO2peak were observed in the ST group. The changes in VO2peak and RVO2peak between the two groups were significant (+9.41% vs +3.03%, p<0.05; +12.83% vs +0.80%, p<0.01). (2) After the 8-week training, the RBC, Hgb, and hematocrit (HCT) increased in the AT group but no statistical difference in the ST group. Changes in Hgb and HCT between the two groups were significant (+4.95% vs –3.21%, p<0.01; +6.48% vs –1.57%, p<0.01). A significant trend in RBC count change was observed between the two groups (+3.19% vs –3.61%, p=0.061). Compared with the pre-test values, no significant changes in RET% and reticulocyte hemoglobin equivalent (RET-He) were found in either groups after the 8-week training. The AT group showed significantly increased of low fluorescent reticulocyte (LFR) and reticulocyte production index (RPI) and significantly decreased medium fluorescent reticulocyte (MFR) and high fluorescent reticulocyte (HFR). There were no significant differences in RET%, RET-He, LFR, MFR, HFR, and IRF (immature reticulocyte fraction) in both groups. However, changes in RPI between both groups after the training camp was significant (+30.60% vs –4.52%, p<0.05). (3) In the AT group, no remarkable changes in serum ERFE, a significant decrease in serum FER, and an increase in serum sTfR and sTfR/lg(FER) levels were observed after of the 8-week training. In the ST group, there were no statistical changes in serum FER, sTfR, and sTfR/lg(FER) and significantly increased serum ERFE. Changes in serum FER, ERFE, sTfR, and sTfR/lg(FER) levels differed significantly between both groups (+17.99% vs +121.31%, p<0.05; –36.16% vs –2.96%, p<0.05; +82.77% vs –8.87%, p<0.05; +108.40% vs –6.96%, p<0.05). (4) There was a significantly positive association between the change in VO2peak and serum sTfR levels and ratio of sTfR to lg(FER) after the 8-week training. Therefore , eight weeks of AT appears to be more effective than ST in improving the oxygen delivery capacity of the blood and aerobic capacity in trained rowers. In the later stage of the 8-week AT, erythropoiesis remained active. Serum sTfR levels may be important in improving aerobic performance.