1 |
MENG Y, LIU Z T, XIE Z W, et al.. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photonics Research, 2020, 8 (4): 564- 576.
|
2 |
XIE Z W, LEI T, QIU H D, et al.. Broadband on-chip photonic spin Hall element via inverse design. Photonics Research, 2020, 8 (2): 121- 126.
|
3 |
FANG B, LI H M, ZHU S N, et al.. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces. Photonics Research, 2020, 8 (8): 1296- 1300.
|
4 |
WANG K Y, REN X S, CHANG W J, et al.. Inverse design of digital nanophotonic devices using the adjoint method. Photonics Research, 2020, 8 (4): 528- 533.
|
5 |
WANG H W, ZHANG Y, HE Y, et al.. Compact silicon waveguide mode converter employing dielectric metasurface structure. Advanced Optical Materials, 2019, 7 (4): 1801191.
|
6 |
ARIZMENDI L.. Photonic applications of lithium niobate crystals. Physica Status Solidi (a), 2004, 201 (2): 253- 283.
|
7 |
JANNER D, TULLI D, GARCÍA-GRANDA M, et al.. Micro-structured integrated electro-optic LiNbO3 modulators. Laser & Photonics Reviews, 2009, 3 (3): 301- 313.
|
8 |
WOOTEN E L, KISSA K M, YI-YAN A, et al.. A review of lithium niobate modulators for fiber-optic communications systems. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6 (1): 69- 82.
|
9 |
ADCOCK J C, DING Y H.. Quantum prospects for hybrid thin-film lithium niobate on silicon photonics. Frontiers of Optoelectronics, 2022, 15, 7.
|
10 |
HU H Y, GUI L L, RICKEN R, et al. Towards nonlinear photonic wires in lithium niobate [C]// Proceedings of SPIE Volume 7604. 2010: 76040R.
|
11 |
XIE R R, LI G Q, CHEN F, et al.. Microresonators in lithium niobate thin films. Advanced Optical Materials, 2021, 9 (19): 2100539.
|
12 |
CHENG Y. Ultra-low loss lithium niobate photonics [C]// Proceedings of SPIE Volume 11266. 2020: 112640A.
|
13 |
HE M B, XU M Y, REN Y X, et al.. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond. Nature Photonics, 2019, 13 (5): 359- 364.
|
14 |
WANG C, ZHANG M, CHEN X, et al.. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562 (7725): 101- 104.
|
15 |
WANG C, ZHANG M, YU M J, et al.. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nature Communications, 2019, 10 (1): 978.
|
16 |
罗砚浓, 蔡鑫伦.. X-切薄膜铌酸锂高效率光栅耦合器的设计. 半导体光电, 2022, 43 (2): 280- 284.
|
17 |
范天伟, 陈云琳, 张进宏.. 基于Talbot效应的掺镁铌酸锂二维六角位相阵列光栅的研究. 物理学报, 2013, 62 (9): 257- 262.
|
18 |
YANG F, FANG H, HAN H P, et al.. Wide bandwidth silicon nitride strip-loaded grating coupler on lithium niobate thin film. Crystals, 2022, 12 (1): 70.
|
19 |
RUAN Z L, HU J Y, XUE Y R, et al.. Metal based grating coupler on a thin-film lithium niobate waveguide. Optics Express, 2020, 28 (24): 35615- 35621.
|
20 |
CAI L T, PIAZZA G.. Low-loss chirped grating for vertical light coupling in lithium niobate on insulator. Journal of Optics, 2019, 21 (6): 065801.
|
21 |
CHEN Z H, NING Y F, XUN Y.. Chirped and apodized grating couplers on lithium niobate thin film. Optical Materials Express, 2020, 10 (10): 2513- 2521.
|
22 |
BAGHBAN M A, SCHOLLHAMMER J, ERRANDO-HERRANZ C, et al.. Bragg gratings in thin-film LiNbO3 waveguides. Optics Express, 2017, 25 (26): 32323- 32332.
|
23 |
王钊, 张爱玲, 田红苗, 等.. 基于铌酸锂的高阶可调谐布拉格波导光栅特性分析. 激光与光电子学进展, 2017, 54 (6): 67- 73.
|
24 |
CHEN Z H, WANG Y W, JIANG Y P, et al.. Grating coupler on single-crystal lithium niobate thin film. Optical Materials, 2017, 72, 136- 139.
|
25 |
CHEN B, RUAN Z L, HU J Y, et al.. Two-dimensional grating coupler on an X-cut lithium niobate thin-film. Optics Express, 2021, 29 (2): 1289- 1295.
|
26 |
MAHMOUD M, GHOSH S, PIAZZA G. Lithium niobate on insulator (LNOI) grating couplers [C]// 2015 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2015: SW4I 7.
|
27 |
VIVIEN, PASCAL, LARDENOIS, et al.. Light injection in SOI microwaveguides using high-efficiency grating couplers. Journal of Lightwave Technology, 2006, 24 (10): 3810- 3815.
|
28 |
ZHENG Y, KAI X C, GAO P P, et al.. Fabrication tolerance analysis of grating couplers between optical fibers and silicon waveguide. Optik, 2020, 201, 163490.
|
29 |
EMMONS R M, HALL D G.. Buried-oxide silicon-on-insulator structures II: Waveguide grating couplers. IEEE Journal of Quantum Electronics, 1992, 28 (1): 164- 175.
|