Nuclear and High-Energy Physics

Research on the muon excess in ultrahigh-energy cosmic ray of extensive air-showers

  • Zhiyi CUI ,
  • Jintao WU ,
  • Jianhong RUAN
Expand
  • School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2023-04-07

  Online published: 2024-05-25

Abstract

Recently, several air shower observatories established that the number of muons produced in ultrahigh-energy cosmic rays from extensive air-showers is significantly larger than that predicted by models. This study confirms that when ultrahigh-energy cosmic rays scatter on air particles, gluon condensation may occur. At this point, the production of strange quarks is significantly enhanced, such that more kaon will be generated in fragmentation products, and the air shower energy will be further distributed to the hadron cascade, which may explain the muon puzzle.

Cite this article

Zhiyi CUI , Jintao WU , Jianhong RUAN . Research on the muon excess in ultrahigh-energy cosmic ray of extensive air-showers[J]. Journal of East China Normal University(Natural Science), 2024 , 2024(3) : 27 -35 . DOI: 10.3969/j.issn.1000-5641.2024.03.003

References

1 ABU-ZAYYAD T, BELOV K, BIRD J D, et al.. Evidence for changing of cosmic ray composition between 1017 and 1018 eV from multicomponent measurements. Physical Review Letters, 2000, 84(19), 4276- 4279.
2 BOGDANOV A G, GROMUSHKIN D M, KOKOULIN R P, et al.. Investigation of the properties of the flux and interaction of ultrahigh-energy cosmic rays by the method of local-muon-density spectra. Physics of Atomic Nuclei, 2010, 73, 1852- 1869.
3 ENGEL R. Test of hadronic interaction models with data from the Pierre Auger Observatory [EB/OL]. (2007-06-13)[2023-03-01]. https://arxiv.org/abs/0706.1921.
4 ABBASI R U, ABE M, ABU-ZAYYAD T, et al.. Study of muons from ultrahigh energy cosmic ray air showers measured with the Telescope array experiment. Physical Review D, 2018, 98 (2): 022002.
5 BOGDANOV A G, KOKOULIN R P, MANNOCCHI G, et al.. Investigation of very high energy cosmic rays by means of inclined muon bundles. Astroparticle Physics, 2018, 98, 13- 20.
6 FOMIN Y A, KALMYKOV N N, KARPIKOV I S, et al.. No muon excess in extensive air showers at 100–500 PeV primary energy: EAS–MSU results. Astroparticle Physics, 2017, 92, 1- 6.
7 GONZALEZ J G. Measuring the muon content of air showers with IceTop [C]// EPJ Web of Conferences. [S.l.]: EDP Sciences, 2015, 99: 06002.
8 APEL W D, ARTEAGA-VELáZQUEZ J C, BEKK K, et al.. Probing the evolution of the EAS muon content in the atmosphere with KASCADE-Grande. Astroparticle Physics, 2017, 95, 25- 43.
9 DEMBINSKI H P, ARTEAGA-VELáZQUEZ J C, CAZON L, et al. Report on tests and measurements of hadronic interaction properties with air showers [C]// EPJ Web of Conferences. [S.l.]: EDP Sciences, 2019, 210: 02004.
10 CAZON L. Working group report on the combined analysis of muon density measurements from eight air shower experiments [EB/OL]. (2020-01-08)[2023-03-01]. https://arxiv.org/abs/2001.07508.
11 AAB A, ABREU P, AGLIETTA M, et al.. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events. Physical Review D, 2015, 91 (3): 032003.
12 AAB A, ABREU P, AGLIETTA M, et al.. Testing hadronic interactions at ultrahigh energies with air showers measured by the Pierre Auger Observatory. Physical Review Letters, 2016, 117 (19): 192001.
13 BELLIDO J A, CLAY R W, Kalmykov N N, et al.. Muon content of extensive air showers: Comparison of the energy spectra obtained by the Sydney University Giant Air-shower Recorder and by the Pierre Auger Observatory. Physical Review D, 2018, 98 (2): 023014.
14 ALBRECHT J, CAZON L, DEMBINSKI H, et al. The Muon Puzzle in air showers and its connection to the LHC [J/OL]. Proceedings of Science, 2021, ICRC2021. https://pos.sissa.it/395/037/pdf.
15 D’ENTERRIA D, PIEROG T, SUN G H.. Impact of QCD jets and heavy-quark production in cosmic-ray proton atmospheric showers up to 1020 eV. The Astrophysical Journal, 2019, 874 (2): 152.
16 ANCHORDOQUI L A, GOLDBERG H, WEILER T J.. Strange fireball as an explanation of the muon excess in Auger data. Physical Review D, 2017, 95 (6): 063005.
17 ANCHORDOQUI L A, CANAL C G, SCIUTTO S J, et al.. Through the looking-glass with ALICE into the quark-gluon plasma: A new test for hadronic interaction models used in air shower simulations. Physics Letters B, 2020, 810, 135837.
18 BAUR S, DEMBINSKI H, PERLIN M, et al.. Core-corona effect in hadron collisions and muon production in air showers. Physical Review D, 2023, 107 (9): 094031.
19 ALVAREZ-MUNIZ J, CAZON L, CONCEI??O R, et al. Muon production and string percolation effects in cosmic rays at the highest energies [EB/OL]. (2012-09-28)[2023-03-01]. https://arxiv.org/abs/1209.6474.
20 FARRAR G R, ALLEN J D. A new physical phenomenon in ultra-high energy collisions [C]// EPJ Web of Conferences. [S.l.]: EDP Sciences, 2013, 53: 07007.
21 BROOIJMANS G, SCHICHTEL P, SPANNOWSKY M.. Cosmic ray air showers from sphalerons. Physics Letters B, 2016, 761, 213- 218.
22 ALLEN J, FARRAR G. Testing models of new physics with UHE air shower observations [EB/OL]. (2013-07-26)[2023-03-01]. https://arxiv.org/abs/1307.7131.
23 FARRAR G R, ALLEN J. Evidence for some new physical process in ultrahigh-energy collisions [C]// EPJ Web of Conferences. [S.l.]: EDP Sciences, 2013, 52: 07005.
24 ACHARYA S, ADAMOVá D, ADHYA S P, et al.. Multiplicity dependence of (multi-) strange hadron production in proton-proton collisions at $\sqrt {s} $ = 13 TeV. The European Physical Journal C, 2020, 80, 167.
25 ANCHORDOQUI L A, CANAL C G, KLING F, et al.. An explanation of the muon puzzle of ultrahigh-energy cosmic rays and the role of the forward physics facility for model improvement. Journal of High Energy Astrophysics, 2022, 34, 19- 32.
26 ZHU W, SHEN Z Q, RUAN J H.. Can a chaotic solution in the QCD evolution equation restrain high-energy collider physics?. Chinese Physics Letters, 2008, 25 (10): 3605- 3608.
27 ZHU W, SHEN Z Q, RUAN J H.. The chaotic effects in a nonlinear QCD evolution equation. Nuclear Physics B, 2016, 911, 1- 35.
28 ZHU W, LAN J S.. The gluon condensation at high energy hadron collisions. Nuclear Physics B, 2017, 916, 647- 668.
29 ZHU W, CHEN Q H, CUI Z Y, et al.. The gluon condensation in hadron collisions. Nuclear Physics B, 2022, 984, 115961.
30 ZHU W, LAN J S, RUAN J H.. The gluon condensation in high energy cosmic rays. International Journal of Modern Physics E, 2018, 27 (9): 1850073.
31 LIU P, RUAN J H.. A possible connection of the broken power-law between electron-and proton-spectra in cosmic rays. International Journal of Modern Physics E, 2019, 28 (9): 1950073.
32 ZHENG Z C, CUI Z Y, RUAN J H.. Research on the structure of cosmic-ray electron and positron fluxes in GeV–TeV energy range. International Journal of Modern Physics E, 2022, 31 (1): 2250012.
33 ZHU W, ZHENG Z C, LIU P, et al.. Looking for the possible gluon condensation signature in sub-TeV gamma-ray spectra: From active galactic nuclei to gamma ray bursts. Journal of Cosmology and Astroparticle Physics, 2021, (1): 038.
34 ZHU W, LIU P, RUAN J H, et al.. Anomalous bremsstrahlung and the structure of cosmic-ray electron–positron fluxes at the GeV–TeV energy range. The Astrophysical Journal, 2020, 896 (2): 106.
35 ZHU W, LIU P, RUAN J H, et al.. Possible evidence for the gluon condensation effect in cosmic positron and gamma-ray spectra. The Astrophysical Journal, 2020, 889 (2): 127.
36 ZHU W, LIU P, RUAN J H, et al.. The gluon condensation effect in the cosmic hadron spectra. Journal of Cosmology and Astroparticle Physics, 2020, (9): 011.
37 RUAN J H, ZHENG Z C, ZHU W.. Exploring the possible gluon condensation signature in gamma-ray emission from pulsars. Journal of Cosmology and Astroparticle Physics, 2021, 2021 (8): 065.
38 GRIBOV V N, LIPATOV L N. Deep inelastic ep-Scattering in a perturbation theory [R]. Institute of Nuclear Physics, Leningrad, 1972.
39 DOKSHITZER Y L.. Calculation of the structure functions for deep inelastic scattering and e+eannihilation by perturbation theory in quantum chromodynamics. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1977, 73, 1216- 1240.
40 ALTARELLI G, PARISI G.. Asymptotic freedom in parton language. Nuclear Physics B, 1977, 126 (2): 298- 318.
41 LIPATOV L N.. Reggeization of the vector meson and the vacuum singularity in nonabelian gauge theories. Yadernaya Fizika, 1976, 23 (3): 642- 656.
42 FADIN V S, KURAEV E A, LIPATOV L N.. On the Pomeranchuk singularity in asymptotically free theories. Physics Letters B, 1975, 60 (1): 50- 52.
43 KURAEV E A, LIPATOV L N, FADIN V S.. Multireggeon processes in the Yang-Mills theory. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1976, 71, 840- 855.
44 KURAEV E A, LIPATOV L N, FADIN V S.. The Pomeranchuk singularity in nonabelian gauge theories. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1977, 72, 377- 389.
45 BALITSKY Y Y, LIPATOV L N.. The Pomeranchuk singularity in quantum chromodynamics. Soviet Journal of Nuclear Physics-Ussr, 1978, 28 (6): 822- 829.
46 GRIBOV L V, LEVIN E M, RYSKIN M G.. Semihard processes in QCD. Physics Reports, 1983, 100 (1/2): 1- 150.
47 MUELLER A H, QIU J W.. Gluon recombination and shadowing at small values of x. Nuclear Physics B, 1986, 268 (2): 427- 452.
48 BALITSKY I.. Operator expansion for high-energy scattering. Nuclear Physics B, 1996, 463 (1): 99- 157.
49 KOVCHEGOV Y V.. Small-x F2 structure function of a nucleus including multiple Pomeron exchanges. Physical Review D, 1999, 60 (3): 034008.
50 KOVCHEGOV Y V.. Unitarization of the BFKL pomeron on a nucleus. Physical Review D, 2000, 61 (7): 074018.
51 RAFELSKI J, MüLLER B.. Strangeness production in the quark-gluon plasma. Physical Review Letters, 1982, 48 (16): 1066- 1069.
52 CANAL C A G, SCIUTTO S J, TARUTINA T.. Testing hadronic-interaction packages at cosmic-ray energies. Physical Review D, 2009, 79 (5): 054006.
53 FENG X T, ZHANG H Y, FENG C F, et al. Measuring the attenuation length of muon number in the air shower with muon detectors of 3/4 LHAASO array [EB/OL]. (2022-10-05)[2023-03-01]. https://arxiv.org/abs/2207.12117.
Outlines

/