华东师范大学学报(自然科学版) ›› 2017, Vol. 2017 ›› Issue (2): 126-137,147.doi: 10.3969/j.issn.1000-5641.2017.02.016

• 河口海岸学 • 上一篇    下一篇

长江河口电厂温排水输运扩散数值模拟

吴宇帆, 朱建荣   

  1. 华东师范大学 河口海岸学国家重点实验室, 上海 200062
  • 收稿日期:2016-02-22 出版日期:2017-03-25 发布日期:2017-03-23
  • 通讯作者: 朱建荣,男,教授,博士生导师,从事河口海洋学研究.E-mail:jrzhu@sklec.ecnu.edu.cn E-mail:jrzhu@sklec.ecnu.edu.cn
  • 作者简介:吴宇帆,男,硕士研究生,从事河口海岸动力学研究.E-mail:504277150@qq.com
  • 基金资助:

    上海市科学技术委员会重点项目(1423100402)

Numerical simulation of transport and diffusion of thermal discharge water from the power plants in the Changjiang estuary

WU Yu-fan, ZHU Jian-rong   

  1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
  • Received:2016-02-22 Online:2017-03-25 Published:2017-03-23

摘要:

本文建立长江河口温排水三维数值模式,模拟华能石洞口第一电厂二期改进工程和综合考虑整个长江河口电厂夏季温排水输运扩散,分析温排水对敏感目标的影响.受长江径流和混合作用,温排水沿南支南岸向下游输运扩散.在仅考虑本工程情况下,在排水口附近温升出现了超过2.0℃的区域,但在取水口温排水的影响微小,温升仅为0.04℃左右.全潮平均表层温升3.0、2.0、1.0℃的面积分别为0.12、0.6、1.42 km2.潮周期和全潮平均温升1℃包络线未进入陈行水库水源地保护区.在综合考虑整个长江河口电厂情况下,温升超过1℃的影响范围大,主要分布在太仓发电厂至外高桥发电厂下游沿南支南岸约50 km的水域内.华能发电厂附近和下游水域温升显著,出现了温升超过4℃的较大范围.全潮平均表层温升3.0、2.0、1.0℃的面积分别为2.34、4.16、13.52 km2.沿本工程取水口和排水口断面,温升沿岸大、离岸小,在近岸出现垂向分层.温升1℃等温线侵入了陈行水库水源地保护区.在陈行水库水源地二级保护区内大潮、中潮、小潮和全潮平均温升1℃的面积分别为1.9、1.82、1.75和1.83 km2.长江河口电厂夏季排放温排水对青草沙水库和东风西沙水库水源地保护区,以及九段沙湿地自然保护区和崇明东滩鸟类自然保护区均没有影响.

关键词: 长江河口, 温排水, 数值模拟, 输运扩散

Abstract:

The three dimensional numerical model of thermal discharge water in the Changjiang estuary was established to simulate the transport and diffusion of thermal discharge water from the Huaneng Shidongkou first power plant under second-phase rebuild project and the whole power plants in the estuary in summertime, and analyze their impacts on the sensitive targets. The thermal discharge water transports and diffusions downstream along the south coast of the South Branch affected by the runoff and mixing. In the case of only considered the project, there appeared area of temperature rise of greater than 2.0℃ near the drain outlet, while the impact is weak and the temperature rise is only 0.04℃ in the water intake. The area of whole tide-averaged surface temperature rise of 3.0, 2.0 and 1.0℃ is 0.12, 0.60 and 1.42 km2, respectively. The tidal and week averaged temperature rise envelope of 1℃ does not enter the water source protection area of Chenhang reservoir. In the case of considered the whole power plants in the estuary, the area of temperature rise of greater than 1.0℃ is wider, mainly distributes along the south coast of the South Branch in 50 km range from Taicang power plants to the downstream coast of Waigaoqiao power plants. The temperature rise is significant and appears wider area of greater than 4℃ near the Huaneng power plants and downstream water. The areas of whole tide-averaged temperature rise of 3.0, 2.0, 1.0℃ reach 2.34, 4.16, 13.52 km2, respectively. The temperature rise is higher and stratification near the coast, and decreases off the coast along the sections cross the water intake and drain outlet of the project. The isotherm of temperature rise of 1℃ invades the water source protection area of Chenhang reservoir. The area of temperature rise of 1℃ averaged during spring, middle, neap and week reaches 1.9, 1.82, 1.75 and 1.83 km2 in the secondary water source reserve of Chenhang reservoir. There is no impact of thermal discharge water from the whole power plants in the Chnagjiang Estuary on the water source protection area of Qingcaosha and Dongfeng xisha reservoir, Jiuduansha wetland nature reserve and Chongming Estern shoal birds nature reserve.

Key words: Changjiang estuary, thermal discharge water, numerical simulation, transport and diffusion

中图分类号: