[1] 尹洪斌. 太湖沉积物形态硫赋存及其与重金属和营养盐关系研究[D]. 南京:中国科学院南京地理与湖泊研究所, 2008.
[2] BALDWIN D S, MITCHELL A. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment[J]. Water Research, 2012, 46(4):965-974.
[3] CARACO N F, COLE J J, LIKENS G E. Sulfate control of phosphorus availability in lakes:A test and re-evaluation of Hasler and Einsele's model[J]. Hydrobiologia, 1993, 253(1/2/3):275-280.
[4] ROZAN T F, TAILLEFERT M, TROUWBORST R E, et al. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay:Implications for sediment nutrient release and benthic macroalgal blooms[J]. Limnol Oceanogr, 2002, 47(5):1346-1354.
[5] 杨海全, 陈敬安, 刘文, 等. 草海沉积物营养元素分布特征与控制因素[J]. 地球与环境, 2016, 44(3):297-303.
[6] 张璐. 胶州湾沉积物中硫酸盐还原和铁异化还原的影响因素研究[D]. 山东青岛:中国海洋大学, 2014.
[7] MYRBO A, SWAIN E B, ENGSTROM D R, et al. Sulfide generated by sulfate reduction is a primary controller of the occurrence of wild rice (Zizania palustris) in shallow aquatic ecosystems[J/OL]. Journal of Geophysical Research:Biogeosciences, 2017, 122(11):2736-2753[2018-05-13]. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JG003787.
[8] POLLMAN C D, SWAIN E B, BAEL D, et al. The evolution of sulfide in shallow aquatic ecosystem sediments-An analysis of the roles of sulfate, organic carbon, iron and feedback constraints using structural equation modeling[J/OL]. Journal of Geophysical Research:Biogeosciences, 2017, 122(11):2719-2735[2018-05-13]. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JG003785.
[9] STAGG C L, SCHOOLMASTER D R, KRAUSS K W, et al. Causal mechanisms of soil organic matter decomposition:Deconstructing salinity and flooding impacts in coastal wetlands[J]. Ecology, 2017, 98(8):2003-2018.
[10] JOHNSON N W, MITCHELL C P, ENGSTROM D R, et al. Methylmercury production in a chronically sulfate-impacted sub-boreal wetland[J]. Environmental Science:Processes & Impacts, 2016, 18(6):725-734.
[11] COLEMAN WASIK J K, ENGSTROM D R, MITCHELL C P J, et al. The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland[J]. Journal of Geophysical Research:Biogeosciences, 2015, 120(9):1697-1715.
[12] REN L, SONG X Y, JEPPESEN E, et al. Contrasting patterns of freshwater microbial metabolic potentials and functional gene interactions between an acidic mining lake and a weakly alkaline lake[J]. Limnology and Oceanography, 2018, 63:S354-S366.
[13] WANG P, BENOIT G. Modeling the biogeochemical role of photosynthetic sulfur bacteria in phosphorus cycling in a managed eutrophic lake[J]. Ecological Modelling, 2017, 361:66-73.
[14] ZHANG W, JIN X, LIU D, et al. Assessment of the sediment quality of freshwater ecosystems in eastern China based on spatial and temporal variation of nutrients[J]. Environ Sci Pollut Res Int, 2017, 24(23):1-10.
[15] ZHU M X, HAO X C, SHI X N, et al. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf[J]. Applied Geochemistry, 2012, 27(4):892-905.
[16] YU F, ZOU J, HUA Y, et al. Transformation of external sulphate and its effect on phosphorus mobilization in Lake Moshui, Wuhan, China[J]. Chemosphere, 2015(138):398-404.
[17] 安文超. 南四湖及主要入湖河口沉积物的污染特征及磷吸附释放研究[D]. 济南:山东大学, 2008.
[18] 朱瑾灿, 吴雨琛, 尹洪斌. 太湖蓝藻聚集区沉积物硫形态的时空变异特征[J]. 中国环境科学, 2017, 37(12):4690-4700.
[19] 叶焰焰. 罗源湾滨海湿地沉积物中还原性无机硫的分布特征及影响研究[D]. 武汉:中国地质大学, 2017.
[20] 段勋, 罗敏, 黄佳芳, 等. 闽江河口潮滩沼泽湿地沉积物铁的形态和空间分布[J]. 环境科学学报, 2017, 37(10):3780-3791.
[21] JULIAN P, CHAMBERS R, RUSSELL T. Iron and pyritization in wetland soils of the Florida Coastal Everglades[J]. Estuaries and Coasts, 2017, 40(3):822-831.
[22] ZHU J, HE Y, ZHU Y S, et al. Biogeochemical sulfur cycling coupling with dissimilatory nitrate reduction processes in freshwater sediments[J]. Environmental Reviews, 2018, 26(2):121-132.
[23] 孙韶玲, 盛彦清, 孙瑞川, 等. 河流水体黑臭演化过程及恶臭硫化物的产生机制[J]. 环境科学与技术, 2018, 41(3):15-22.
[24] BAO P, LI G X, SUN G X. The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling[J]. Science of the Total Environment, 2017, 613/614:398-408.
[25] ELLER G, KANEL L K, KRUGER M. Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plusssee[J]. Applied and Environmental Microbiology, 2005, 71(12):8925-8928.
[26] LOY A, DULLER S, BARANYI C, et al. Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes[J]. Environmental Microbiology, 2010, 11(2):289-299.
[27] 郭晨辉, 李和祥, 方芳, 等. 钼锑抗分光光度法对黄河表层沉积物中磷的形态分布及其吸附-解吸特征研究[J]. 光谱学与光谱分析, 2018, 38(1):218-223.
[28] ZHU J, HE Y, WANG J H, et al. Impact of aeration disturbances on endogenous phosphorus fractions and their algae growth potential from malodorous river sediment[J]. Environ Sci Pollut Res, 2017, 24:8062-8070.
[29] 王敬富, 陈敬安, 罗婧, 等. 红枫湖沉积物内源磷释放通量估算方法的对比研究[J]. 地球与环境, 2018, 46(1):1-6.
[30] DING S, YAN W, DAN W, et al. In situ, high-resolution evidence for iron-coupled mobilization of phosphorus in sediments[J]. Sci Rep, 2016, 6(1):24341.
[31] RYDIN E. Potentially mobile phosphorus in lake Erken sediment[J]. Water Research, 2000, 34(7):2037-2042.
[32] JING L, LIU X, BAI S, et al. Effects of sediment dredging on internal phosphorus:A comparative field study focused on iron and phosphorus forms in sediments[J]. Ecological Engineering, 2015(82):267-271.
[33] HANSEL C M, LENTINI C J, TANG Y, et al. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments[J]. Isme Journal, 2015, 9(11):2400.
[34] CESBRON F, METZGER E, LAUNEAU P, et al. Simultaneous 2D imaging of dissolved iron and reactive phosphorus in sediment porewaters by thin-film and hyperspectral methods[J]. Environmental Science & Technology, 2014, 48(5):2816-2826.
[35] 杨宏伟, 杨小红, 韩明梅. 黄河表层沉积物中磷形态分布与释放风险[J]. 环境化学, 2016, 35(2):403-410.
[36] XIANG S, NIE F,WU D, et al. Nitrogen distribution and diffusive fluxes in sediment interstitial water of Poyang Lake[J]. Environmental Earth Sciences, 2015, 74(3):2609-2615.
[37] 杨斌, 王婷, 王坤, 等. 一种改进的磷形态连续提取方法[J]. 环境科学与技术, 2017, 40(9):90-97.
[38] WANG J, CHEN J, DING S,et al.Effects of seasonal hypoxia on the release of phosphorus from sediments in deep-water ecosystem:a case study in Hongfeng lake, Southwest China[J]. Environ Pollut, 2016, 219:258-265.
[39] HUANG L, FANG H, HE G, et al. Effects of internal loading on phosphorus distribution in the Taihu Lake driven by wind waves and lake currents[J]. Environ Pollut, 2016, 219:760-773.
[40] JIAN L, JUNYI Y, JINGCHUN L, et al. The effects of sulfur amendments on the geochemistry of sulfur, phosphorus and iron in the mangrove plant (Kandelia obovata (S. L.)) rhizosphere[J]. Marine Pollution Bulletin, 2016, 114(2):733.
[41] MYRBO A, SWAIN E B, JOHNSON N W, et al. Increase in Nutrients, Mercury, and Methylmercury as a Consequence of Elevated Sulfate Reduction to Sulfide in Experimental Wetland Mesocosms[J/OL]. Journal of Geophysical Research:Biogeosciences, 2017, 122(11):2769-2785[2018-05-15]. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JG003788.
[42] GEURTS J J M, SARNEEL J M, WILLERS B J C, et al. Interacting effects of sulphate pollution, sulphide toxicity and eutrophication on vegetation development in fens:A mesocosm experiment[J]. Environmental Pollution, 2009, 157:2072-2081.
[43] LAMERS L P M, FALLA S J, SAMBORSKA E M, et al. Factors controlling the extent of eutrophication and toxicity in sulfate-polluted freshwater wetlands[J]. Limnology and Oceanography, 2002, 47:585-593.
[44] WELLE M, SMOLDERS A, CAMP H, et al. Biogeochemical interactions between iron and sulphate in freshwater wetlands and their implications for interspecific competition between aquatic macrophytes[J]. Freshwater Biology, 2007, 52, 434-447.
[45] WESTON N B, VILE M A, NEUBAUER S C, et al. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils[J]. Biogeochemistry, 2011, 102:135-151.
[46] 龚梦丹, 金增锋, 王燕, 等. 长江中下游典型浅水湖泊沉积物水界面磷与铁的耦合关系[J]. 湖泊科学, 2017, 29(5):1103-1111.
[47] WANG J F, CHEN J A, GUO J Y, et al. Combined Fe/P and Fe/S ratios as a practicable index for estimating the release potential of internal-P in freshwater sediment[J]. Environmental Science and Pollution Research, 2018, 25:10740-10751.
[48] HOFFMANN C C, HEIBERG L, AUDET J, et al. Low phosphorus release but high nitrogen removal in two restored riparian wetlands inundated with agricultural drainage water[J]. Ecological Engineering, 2012, 46:75-87.
[49] JIN X D, HE Y L, KIRUMBA G, et al. Phosphorus fractions and phosphate sorption-release characteristics of the sediment in the Yangtze River estuary reservoir[J]. Ecological Engineering, 2013, 55:62-66.
[50] KENNETT D M, HARGRAVES P E. Benthic diatoms and sulfide fluctuations:Upper basin of Pettaquamscutt River, Rhode Island[J]. Estuarine, Coastal and Shelf Science, 1985, 21(4):577-586. |