[1] 相泽均. 冷轧钢板表面缺陷检测系统[J]. 周源, 译. 世界钢铁, 1994, 21(2): 66-73. [2] 陈妍. 冷轧带钢材表面缺陷智能检测技术的发展 [J]. 鞍钢技术, 1998(9): 25-30 [3] 刘娜, 强锡富, 高若云. 图像处理在非接触测量中的应用 [J]. 电测与仪表, 1998(11): 44-45 [4] 罗志勇, 刘栋玉, 江涛, 等. 新型冷轧带钢表面缺陷在线检测系统 [J]. 华中理工大学学报, 1996(1): 75-78 [5] LIU B, WU S, ZOU S F. Automatic detection technology of surface defects on plastic products based on machine vision [C]// 2010 International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2010: 2213-2216. DOI: 10.1109/MACE.2010.5536470. [6] DENG S E, CAI W W, XU Q Y, et al. Defect detection of bearing surfaces based on machine vision technique [C]// 2010 International Conference on Computer Application and System Modeling. IEEE, 2010: V4-548-V4-554. DOI: 10.1109/ICCASM.2010.5620311. [7] 贾方庆. 基于机器视觉的带钢表面缺陷检测系统研究 [D]. 重庆: 重庆大学, 2007. [8] 谭绍华. 基于机器视觉的带钢表面缺陷检测系统研究 [D]. 武汉: 华中科技大学, 2012. [9] 刘孟轲, 吴洋, 王逊. 基于卷积神经网络的轨道表面缺陷检测技术实现 [J]. 现代计算机(专业版), 2017(29): 67-71,79 [10] 刘雄祥. 基于卷积神经网络的铁轨表面缺陷识别研究 [D]. 四川 绵阳: 西南科技大学, 2018. [11] GIRSHICK R. Fast R-CNN [C]// 2015 IEEE International Conference on Computer Vision(ICCV). IEEE, 2015: 1440-1448. DOI: 10.1109/ICCV.2015.169. [12] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149 [13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2016: 779-788. DOI: 10.1109/CVPR.2016.91. [14] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector [C]// Computer Vision - ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9905. Cham: Springer, 2016: 21-37. [15] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). IEEE, 2005: 886-893. DOI: 10.1109/CVPR.2005.177. [16] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision(IJCV), 2004, 60(2): 91-110 [17] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324 [18] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90 [19] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2015-04-10)[2019-06-15]. https://arxiv.org/abs/1409.1556. [20] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2016: 770-778. DOI: 10.1109/CVPR.2016.90. [21] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014: 580-587. DOI: 10.1109/CVPR.2014.81. [22] HUANG L C, YANG Y, DENG Y F, et al. DenseBox: Unifying landmark localization with end to end object detection [EB/OL]. (2015-09-19)[2019-06-15]. http://export.arxiv.org/pdf/1509.04874v3. [23] ZHU C C, HE Y H, SAVVIDES M. Feature Selective anchor-free module for single-shot object detection [C]//2019 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2019: 840-849. DOI: 10.1109/CVPR.2019.00093. [24] REDMON J, FARHADI A. YOLOv3: An incremental improvement [EB/OL]. (2018-04-08)[2019-06-15]. https://arxiv.org/abs/1804.02767.
|