| 1 | DIERCKS C S, KALMUTZKI M J, DIERCKS N J, et al. Conceptual advances from werner complexes to metal-organic frameworks. ACS Central Science, 2018, 4 (11): 1457- 1464. | 
																													
																						| 2 | CHEN Z, KIRLIKOVALI K O, LI P, et al. Reticular chemistry for highly porous metal-organic frameworks: The chemistry and applications. Accounts of Chemical Research, 2022, 55 (4): 579- 591. | 
																													
																						| 3 | DING M, FLAIG R W, JIANG H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chemical Society Reviews, 2019, 48 (10): 2783- 2828. | 
																													
																						| 4 | XU W, YAGHI O M. Metal-organic frameworks for water harvesting from air, anywhere, anytime. ACS Central Science, 2020, 6 (8): 1348- 1354. | 
																													
																						| 5 | GUO J, QIN Y, ZHU Y, et al. Metal-organic frameworks as catalytic selectivity regulators for organic transformations. Chemical Society Reviews, 2021, 50 (9): 5366- 5396. | 
																													
																						| 6 | DUAN C, LIANG K, LIN J, et al. Application of hierarchically porous metal-organic frameworks in heterogeneous catalysis: A review. Science China Materials, 2022, 65 (2): 298- 320. | 
																													
																						| 7 | HE J, XU J, YIN J, et al. Recent advances in luminescent metal-organic frameworks for chemical sensors. Science China Materials, 2019, 62 (11): 1655- 1678. | 
																													
																						| 8 | GAO L L, GAO E Q. Metal-organic frameworks for electrochemical sensors of neurotransmitters. Coordination Chemistry Reviews, 2021, 434213784. | 
																													
																						| 9 | ZHOU X, JIN H, XIA B Y, et al. Molecular cleavage of metal-organic frameworks and application to energy storage and conversion. Advanced Materials, 2021, 33 (51): 2104341. | 
																													
																						| 10 | CHEN C, SUN J K, ZHANG Y J, et al. Flexible viologen-based porous framework showing X-ray induced photochromism with single-crystal-to-single-crystal transformation. Angewandte Chemie-International Edition, 2017, 56 (46): 14458- 14462. | 
																													
																						| 11 | LI X, LI Y, YANG X, et al. Cationic coordination polymers with thirteen-fold interpenetrating dia networks: Selective coloration and ion-controlled photochromism. Chemical Communications, 2021, 57 (93): 12496- 12499. | 
																													
																						| 12 | GUO M Y, LI G, YANG S L, et al. Metal-organic frameworks with novel catenane-like interlocking: Metal-determined photoresponse and uranyl sensing. Chemistry-A European Journal, 2021, 27 (66): 16415- 16421. | 
																													
																						| 13 | LI S L, HAN M, ZHANG Y, et al. X-ray and uv dual photochromism, thermochromism, electrochromism, and amine-selective chemochromism in an anderson-like Zn7 cluster-based 7-fold interpenetrated framework. Journal of the American Chemical Society, 2019, 141 (32): 12663- 12672. | 
																													
																						| 14 | FU T, WEI Y L, ZHANG C, et al. A viologen-based multifunctional Eu-MOF: Photo/electro-modulated chromism and luminescence. Chemical Communications, 2020, 56 (86): 13093- 13096. | 
																													
																						| 15 | SUI Q, REN X T, DAI Y X, et al. Piezochromism and hydrochromism through electron transfer: New stories for viologen materials. Chemical Science, 2017, 8 (4): 2758- 2768. | 
																													
																						| 16 | SUI Q, YUAN Y, YANG N N, et al. Coordination-modulated piezochromism in metal–viologen materials. Journal of Materials Chemistry C, 2017, 5 (47): 12400- 12408. | 
																													
																						| 17 | GONG T, LI P, SUI Q, et al. Switchable ferro-, ferri-, and antiferromagnetic states in a piezo- and hydrochromic metal-organic framework. Inorganic Chemistry, 2018, 57 (12): 6791- 6794. | 
																													
																						| 18 | GONG T, SUI Q, LI P, et al. Versatile and switchable responsive properties of a lanthanide-viologen metal-organic framework. Small, 2019, 15 (5): 1803468. | 
																													
																						| 19 | LI P, SUI Q, GUO M Y, et al. Selective chemochromic and chemically-induced photochromic response of a metal-organic framework. Chemical Communications, 2020, 56 (44): 5929- 5932. | 
																													
																						| 20 | SUN J K, YANG X D, YANG G Y, et al. Bipyridinium derivative-based coordination polymers: From synthesis to materials applications. Coordination Chemistry Reviews, 2019, 378533- 560. | 
																													
																						| 21 | GONG T, LI P, SUI Q, et al. A stable electron-deficient metal-organic framework for colorimetric and luminescence sensing of phenols and anilines. Journal of Materials Chemistry A, 2018, 6 (19): 9236- 9244. | 
																													
																						| 22 | LI G, YANG S L, LIU W S, et al. Photoinduced versus spontaneous host-guest electron transfer within a MOF and chromic/luminescent response. Inorganic Chemistry Frontiers, 2021, 8 (22): 4828- 4837. | 
																													
																						| 23 | YANG N N, FANG J J, SUI Q, et al. Incorporating electron-deficient bipyridinium chromorphores to make multiresponsive metal-organic frameworks. ACS Applied Materials & Interfaces, 2018, 10 (3): 2735- 2744. | 
																													
																						| 24 | YANG N N, SUN W, XI F G, et al. Postsynthetic N-methylation making a metal-organic framework responsive to alkylamines . Chemical Communications, 2017, 53 (10): 1747- 1750. | 
																													
																						| 25 | LIU X Y, YIN X M, YANG S L, et al. Chromic and fluorescence-responsive metal-organic frameworks afforded by N-amination modification. ACS Applied Materials & Interfaces, 2021, 13 (17): 20380- 20387. | 
																													
																						| 26 | YANG N N, ZHOU L J, LI P, et al. Space-confined indicator displacement assay inside a metal–organic framework for fluorescence turn-on sensing. Chemical Science, 2019, 10 (11): 3307- 3314. | 
																													
																						| 27 | YIN X M, GAO L L, LI P, et al. Fluorescence turn-on response amplified by space confinement in metal-organic frameworks. ACS Applied Materials & Interfaces, 2019, 11 (50): 47112- 47120. | 
																													
																						| 28 | RAMA G, ARDA A, MARECHAL J D, et al. Stereoselective formation of chiral metallopeptides. Chemistry-A European Journal, 2012, 18 (23): 7030- 7035. | 
																													
																						| 29 | DECOSTE J B, PETERSON G W, JASUJA H, et al. Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit . Journal of Materials Chemistry A, 2013, 1 (18): 5642- 5650. | 
																													
																						| 30 | NICKERL G, LEISTNER M, HELTEN S, et al. Integration of accessible secondary metal sites into MOFs for H2S removal . Inorganic Chemistry Frontiers, 2014, 1 (4): 325- 330. | 
																													
																						| 31 | KUMAR V, MIRZAEI A, BONYANI M, et al. Advances in electrospun nanofiber fabrication for polyaniline (PANI)-based chemoresistive sensors for gaseous ammonia. Trends in Analytical Chemistry, 2020, 129, 129115938. | 
																													
																						| 32 | SUI Q, LI P, YANG N N, et al. Differentiable detection of volatile amines with a viologen-derived metal-organic material. ACS Applied Materials & Interfaces, 2018, 10 (13): 11056- 11062. | 
																													
																						| 33 | NING D, LIU Q, WANG Q, et al. Pyrene-based MOFs as fluorescent sensors for PAHs: An energetic pathway of the backbone structure effect on response. Dalton Transactions, 2019, 48 (17): 5705- 5712. |