[1] KEMNA A G Z, VORST A C F. A pricing method for options based on average asset values [J]. Journal of Banking and Finance, 1990, 14(1): 113-129. [2] WONG H Y, CHEUNG H L. Geometric Asian options: Valuation and calibration with stochastic volatility [J]. Quantitative Finance, 2004, 4(3): 301-314. [3] CHOU C S, LIN H J. Asian options with jumps [J]. Statistics & Probability, 2006, 6(14): 1983-1993. [4] CHERIDITO P. Regularizing fractional Brownian motion with a view towards stock price modelling [D]. Zürich: Swiss Federal Institute of Technology, 2001. [5] CHERIDITO P. Arbirage in fractional Brownian motion models [J]. Finance and Stochastics, 2003, 7(4): 533-553. [6] KUZNETSOV Y A. The absence of arbitrage in a model with fractal Brownian motion [J]. Russian Mathematical Surveys, 1999, 54(4): 847-848. [7] ZÄHLE M. Long range dependence, no arbitrage and the Black–Scholes formula [J]. Stochastics and Dynamics, 2002, 2(2): 265-280. [8] MISHURA Y S. Stochastic Calculus for Fractional Brownian Motion and Related Processes [M]. Berlin: Springer, 2008. [9] WANG X T. Scaling and long-range dependence in option pricing I: Pricing European option with transaction costs under the fractional Black–Scholes model [J]. Physica A, 2010, 389(3): 438-444. [10] WANG X T. Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black–Scholes model with transaction costs [J]. Physica A, 2011, 390(9): 1623-1634. [11] MEHRDOUST F, SABER N. Pricing arithmetic Asian option under a two-factor stochastic volatility model with jumps [J]. Journal of Statistical Computation and Simulation, 2015, 85(18): 3811-3819. [12] RAMBEERICH N. A high order finite element scheme for pricing options under regime switching jump diffusion processes [J]. Journal of Computational and Applied Mathematics, 2016, 300(2): 83-96. [13] XIAO W L. Pricing currency options in a fractional Brownian motion with jumps[J]. Economic Modelling, 2010, 27(5): 935-942. [14] PENG B. Pricing Asian power options under jump-fraction process [J]. Journal of Economics, Finance and Administrative Science, 2012, 17(33): 2-9. [15] 丰月姣. 带跳混合分数布朗运动下利差期权定价[J]. 佳木斯大学学报,(自然科学版), 2013, 30(6): 922-925. [16] 孙玉东. 带跳混合分数布朗运动下利差期权定价[J]. 系统科学与数学, 2013, 32(11): 1377-1385. [17] SHOKROLLAHI F. Actuarial approach in a mixed fractional Brownian motion with jumps environment for pricing currency option [J]. Advances in Difference Equations, 2015, 257(1): 1-8. |