[1] DO CARMO M, PENG C K. Stable complete minimal surfaces in R3 are planes[J]. Bull Amer Math Soc, 1979, 1:903-906.
[2] FISCHER-COLBRIE D, SCHOEN R. The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature[J]. Comm Pure Appl Math, 1980, 33(2):199-211.
[3] YUN G. Total scalar curvature and L2 harmonic 1-forms on a minimal hypersurface in Euclidean space[J]. Geom Dedicata, 2002, 89:135-141.
[4] 付海平. 子流形上整体几何与几何分析的若干问题研究[D]. 杭州:浙江大学, 2007.
[5] TANNO S. L2 harmonic forms and stability of minimal hypersurfaces[J]. J Math Soc Japan, 1996, 48:761-768.
[6] ZHU P. L2 harmonic forms and stable hypersurfaces in space forms[J]. Arch Math, 2011, 97:271-279.
[7] 朱鹏. 调和2-形式与极小超曲面[J]. 阜阳师范学院学报(自然科学版), 2011, 28(4):1-3.
[8] ZHU P. Gap theorems on hypersurfaces in spheres[J]. J Math Anal Appl, 2015, 430:742-754.
[9] LI P. Lecture Notes on Geometric Analysis[M]. Seoul:Seoul National University, 1993:17-23.
[10] HOFFMAN D, SPRUCK J. Sobolev and isoperimetric inequalities for Riemannian submanifolds[J]. Comm Pure Appl Math, 1974, 27:715-727.
[11] LIN H Z. L2 harmonic forms on submanifolds in a Hadamard manifold[J]. Nonlinear Anal. 2015, 125:310-322.
[12] CALDERBANK D M J, GAUDUCHON P, HERZLICH M. Refined Kato inequalities and conformal weights in Riemannian geometry[J]. J Funct Anal, 2000, 173(1):214-255. |