[1] POSNER E C. Derivation in prime rings[J]. Proceedings of American Mathematical Society, 1957, 8(6):1093-1100.
[2] BREŠAR M. Centralizing mappings on von Neumann algebras[J]. Proceedings of American Mathematical Society, 1991, 111(2):501-510.
[3] BREŠAR M. Centralizing mappings and derivations in prime rings[J]. Journal of Algebra, 1993, 156(2):385-394.
[4] MAYNE J H. Centralizing automorphisms of prime rings[J]. Canadian Mathematical Bulletin, 1976, 19(1):113-115.
[5] BREŠAR M, MARTINDLE W S, MIERS C R. Centralizing maps in prime ring with involution[J]. Journal of Algebra, 1993, 161(2):342-357.
[6] LEE T K. σ-Commuting mappings in semiprime rings[J]. Communications in Algebra, 2001, 29(7):2945-2951.
[7] LEE T K. Derivations and centralizing mappings in prime rings[J]. Taiwanese Journal of Mathematics, 1997, 1(3):333-342.
[8] LEE T C. Derivations and centralizing maps on skew elements[J]. Soochow Journal of Mathematics, 1998, 24(4):273-290.
[9] FILIPPIS V D, DHARA B. Some results concerning n-σ-centralizing mappings in semiprime rings[J]. Arabian Journal of Mathematics, 2014, 3(1):15-21.
[10] DU Y Q, WANG Y. k-Commuting maps on triangular algebras[J]. Linear Algebra and its Applications, 2012, 436(5):1367-1375.
[11] LI Y B, WEI F. Semi-centralizing maps of generalized matrix algebras[J]. Linear Algebra and its Applications, 2012, 436(5):1122-1153.
[12] QI X F, HOU J C. Characterization of k-commuting additive maps on rings[J]. Linear Algebra and its Applications, 2015, 468:48-62.
[13] ALI S, DAR N A. On *-centralizing mappings in rings with involution[J]. Georgian Mathematical Journal, 2014, 21(1):25-28.
[14] BREŠAR M. Commuting Maps:A survey[J], Taiwanese Journal of Mathematics, 2004, 8(3):361-397.
[15] BREŠAR M, ŠEMRL P. Commuting traces of biadditive maps revisited[J]. Communications in Algebra, 2003, 31(1):381-388.
[16] BAI Z F, DU S P. Strong commutativity preserving maps on rings[J]. Rocky Mountain Journal of Mathematics, 2014, 44(3):733-742. |