Journal of East China Normal University(Natural Science) ›› 2023, Vol. 2023 ›› Issue (3): 93-107.doi: 10.3969/j.issn.1000-5641.2023.03.010
• Estuary and Coastal Research • Previous Articles Next Articles
Ying ZHANG1, Xiaohui ZHANG1, Tingting LIU1, Zhixuan YANG1, Jianwu TANG1,2,3,*()
Received:
2022-01-29
Accepted:
2022-05-23
Online:
2023-05-25
Published:
2023-05-25
Contact:
Jianwu TANG
E-mail:jwtang@sklec.ecnu.edu.cn
CLC Number:
Ying ZHANG, Xiaohui ZHANG, Tingting LIU, Zhixuan YANG, Jianwu TANG. Fluxes and influencing factors of dissolved CH4 in coastal wetlands[J]. Journal of East China Normal University(Natural Science), 2023, 2023(3): 93-107.
Table 1
Sampling information of interval sampling and in-situ observation"
研究区 | 季节 | 间隔采样时间 | 样本数 | 溶解态CH4原位连续观测时间 | 多参和流速仪原位连续观测时间 |
JDS | 秋 | 2020.09.20—2020.09.22 | 41 | 2020.09.20—2020.09.27 | 2020.09.20—2020.10.19 |
冬 | 2021.01.27—2021.01.29 | 42 | 2021.01.26—2021.01.30 | 2021.01.25—2021.03.05 | |
春 | 2021.05.07—2021.05.09 | 43 | 2021.05.06—2021.05.09 | 2021.04.28—2021.05.30 | |
夏 | 2021.07.13—2021.07.15 | 41 | 2021.07.13—2021.07.16 | 2021.07.13—2021.08.19 | |
XS | 秋 | 2020.10.26—2020.10.28 | 43 | 2020.10.26—2020.10.29 2020.11.10—2020.11.12 | 2020.10.24—2020.11.12 |
冬 | 2020.12.26—2020.12.28 | 38 | 2020.12.24—2020.12.28 | 2020.12.23—2021.01.20 | |
春 | 2021.03.25—2021.03.26 2021.03.28 | 41 | 2021.03.23—2021.03.28 | 2021.03.22—2021.04.26 | |
夏 | 2021.06.23—2021.06.25 | 41 | 2021.06.23—2021.06.25 | 2021.06.02—2021.07.02 |
Table 2
Mean±standard deviation for water environment characteristics in sampling sites, JDS and XS wetlands"
季节 | 水温/℃ | 盐度/‰ | 溶解氧/(mg·L–1) | | | | 叶绿素 a/(μg·L–1) | |
JDS | 春 | 20.83±1.90 | 2.97±2.13 | 7.90±0.64 | 0.20±0.05 | 68.61±14.77 | 206.65±85.01 | 2.74±1.28 |
夏 | 28.63±1.25 | 1.90±1.54 | 6.57±0.62 | 0.39±0.11 | 61.45±14.21 | 60.79±28.84 | 6.62±1.38 | |
秋 | 23.23±1.76 | 0.57±0.76 | 7.57±0.57 | 0.25±0.11 | 72.92±15.46 | 110.86±36.82 | 7.27±2.33 | |
冬 | 10.00±1.63 | 10.36±2.97 | 10.25±0.61 | 0.74±0.11 | 76.94±11.14 | 467.99±93.33 | 3.10±1.81 | |
XS | 春 | 16.02±2.23 | 0.20±0.07 | 9.18±0.91 | 4.01±0.87 | 104.16±10.43 | 25.43±2.63 | 4.72±2.19 |
夏 | 25.90±2.22 | 0.14±0.05 | 7.10±1.71 | 0.58±0.11 | 81.41±12.23 | 18.63±1.54 | 9.03±4.48 | |
秋 | 18.38±1.73 | 0.18±0.06 | 9.02±1.77 | 0.10±0.04 | 75.33±12.56 | 16.91±3.33 | 9.32±5.96 | |
冬 | 7.19±2.55 | 0.19±0.04 | 11.34±0.75 | 0.26±0.05 | 103.89±6.84 | 53.08±1.97 | 2.76±1.48 |
Table 3
Lateral flux of CH4 calculated by different methods in JDS and XS wetlands during the interval sampling period"
研究区 | 季节 | FLat /(mg·m–2·d–1) | ||
方法 1 | 方法 2 | 方法 3 | ||
JDS | 春 | 0.022 | 0.072 | 0.079 |
夏 | 0.137 | 0.072 | 0.178 | |
秋 | 1.824 | 0.693 | 4.387 | |
冬 | 0.224 | 0.180 | 0.418 | |
XS | 春 | 1.416 | 1.272 | 0.696 |
夏 | 1.032 | 0.899 | 1.273 | |
秋 | 0.227 | 0.296 | 0.164 | |
冬 | 0.397 | 0.284 | 0.402 |
Table 4
Comparison of CH4 vertical diffusive fluxes in different ecosystems"
水域 | 生态系统类型 | CH4垂向扩散通量 /(mg·m–2·d–1) | 参考文献 |
大西洋 | 大洋 | (2.72 ~ 5.44) × 10–3 | [ |
南海中部和北部 | 陆架海 | –0.45 ~ 1.90 | [ |
瓜纳巴拉湾 | 海湾 | 9.04 ~ 15.68 | [ |
莫顿湾南部 | 海湾 | 0.21 ~ 10.23 | [ |
孟加拉湾东南部 | 海湾 | 1.76 ~ 7.52 | [ |
瓜达基维尔河口 | 河口 | 0.03 ~ 2.37 | [ |
长江口及其邻近海域 | 河口 | 0.99 ± 0.36 | [ |
黄河河口 | 河口 | 0.09 ~ 8.87 | [ |
泰河河口 | 河口 | 0.27 ~ 0.99 | [ |
鳝鱼滩湿地 (闽江河口) | 滨海湿地水体 | –15.40 ~ 20.50 | [ |
九段沙湿地 (长江河口) | 滨海湿地水体 | 1.85 | 本文 |
西沙湿地 (长江河口) | 滨海湿地水体 | 2.90 | 本文 |
太湖 | 湖泊 | –5.04 ~ 80.40 | [ |
玄武湖 | 湖泊 | –6.72 ~ 75.60 | [ |
巢湖 | 湖泊 | 0.96 ~ 473.09 | [ |
上海市内河网 | 河流 | 15.48 ~ 2062.46 | [ |
亚德亚河 | 河流 | 0.65 ~ 1827.84 | [ |
亚马逊河 | 河流 | 0.16 ~ 644.80 | [ |
1 | SOLOMOM S, QIN D, MANNING M, et al. Technical summary. Climate change 2007: The physical science basis. Contribution of working group I to the fourth [R]. Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007: 19-91. |
2 | World Meteorologieal Organization. WMO Greenhouse Gas Bulletin (GHG Bulletin): The state of greenhouse gases in the atmosphere based on global observations through 2019 [EB/OL]. (2020-11-23)[2022-01-10]. https://www.doc88.com/p-31173044719519.html. |
3 | SEITZING S P, KROEZE C, STYLES R V. Global distribution of N2O emissions from aquatic systems: Natural emissions and anthropogenic effects . Chemosphere Global Change Science, 2000, 2 (3/4): 267- 279. |
4 | MUSENZE R S, WERNER U, GRINHAM A, et al. Methane and nitrous oxide emissions from a subtropical estuary (the Brisbane River estuary, Australia). Science of the Total Environment, 2014, 472, 719- 729. |
5 | CHMURA G L, ANISFDLD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 2003, 17 (4): 1111. |
6 | TONG C, WANG W Q, HUANG J F, et al. Invasive alien plants increase CH4 emissions from a subtropical tidal estuarine wetland . Biogeochemistry, 2012, 111 (1/2/3): 677- 693. |
7 | CHAMBERLAIN S D, GOMEZ-CASANOVAS N, WALTER M T, et al. Influence of transient flooding on methane fluxes from subtropical pastures. Journal of Geophysical Research: Biogeosciences, 2016, 121 (3): 965- 977. |
8 | SÁNCHEZ-RODRÍGUEZ J, SIERRA A, JIMÉNEZ-LÓPEZ D, et al. Dynamic of CO2, CH4 and N2O in the Guadalquivir estuary . Science of the Total Environment, 2022, 805, 150193. |
9 | 汪青, 刘敏, 侯立军, 等. 崇明东滩湿地 CO2、CH4和 N2O 排放的时空差异 . 地理研究, 2010, 29 (5): 935- 946. |
10 | JØRGENSEN B B, KASTEN S. Sulfur cycling and methane oxidation [M]// SCHULZ H D, MATTHIAS Z. Marine Geochemistry. Berlin, Heidelberg : Springer Verlag , 2006: 271-309. |
11 | 贺文君, 韩广轩, 宋维民, 等. 潮汐作用对黄河三角洲盐沼湿地甲烷排放的影响. 生态学报, 2019, 39 (17): 6238- 6246. |
12 | 许鑫王豪, 赵一飞, 邹欣庆, 等. 中国滨海湿地 CH4通量研究进展 . 自然资源学报, 2015, 30 (9): 1594- 1605. |
13 | OSBURN C L, MIKAN M P, ETHERIDGE J R, et al. Seasonal variation in the quality of dissolved and particulate organic matter exchanged between a salt marsh and its adjacent estuary. Journal of Geophysical Research: Biogeosciences, 2015, 120 (7): 1430- 1449. |
14 | BOGARD M J, BERGAMASCHI B A, BUTMAN D E, et al. Hydrologic export is a major component of coastal wetland carbon budgets [J]. Global Biogeochemical Cycles, 2020, 34(8): e2019GB006430. |
15 | 高洁, 郑循华, 王睿, 等. 漂浮通量箱法和扩散模型法测定内陆CH4和N2O排放通量的初步比较研究 [J]. 气候与环境研究, 2014, 19(3): 290-302. |
16 | ARÉVALO-MARTÍNEZ D L, BEYER M, KRUMBHOLZ M, et al. A new method for continuous measurements of oceanic and atmospheric N2O, CO and CO2: Performance of off-axis integrated cavity output spectroscopy (OA-ICOS) coupled to non-dispersive infrared detection (NDIR) . Ocean Science, 2013, 9 (6): 1071- 1087. |
17 | PUMPANEN J, KOLARI P, ILVESNIEMI H, et al. Comparison of different chamber techniques for measuring soil CO2 efflux . Agricultural and Forest Meteorology, 2004, 123 (3/4): 159- 176. |
18 | GUÉRIN F, ABRIL G, SERÇA D, et al. Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream . Journal of Marine Systems, 2007, 66 (1/2/3/4): 161- 172. |
19 | SANTOS I R, MAHER D T, EYRE B D, et al. Coupling automated radon and carbon dioxide measurements in coastal waters. Environmental Science & Technology, 2012, 46 (14): 7685- 7691. |
20 | WEBB J R, MAHER D T, SANTOS I R, et al. Automated, in situ measurements of dissolved CO2, CH4, and δ13C values using cavity enhanced laser absorption spectrometry: Comparing response times of air-water equilibrators [J]. Limnology and Oceanography: Methods, 2016, 14(5): 323-337. |
21 | 崔百惠. 九段沙附近水体浮游植物群落结构变化研究 [D]. 上海: 上海师范大学, 2014. |
22 | 陈家宽. 上海九段沙湿地自然保护区科学考察集 [M]. 北京: 科学出版社, 2003. |
23 | 马华, 陈秀芝, 潘卉, 等. 持续收割对上海九段沙湿地芦苇生长特征、生物量和土壤全氮含量的影响. 生态与农村环境学报, 2013, 29 (2): 209- 213. |
24 | 马安娜, 陆健健. 长江口崇西湿地生态系统的二氧化碳交换及潮汐影响. 环境科学研究, 2011, 24 (7): 716- 721. |
25 | 沙晨燕, 王天慧, 陆健健. 林泽湿地抗 SO2木本植物的初步研究 . 环境科学研究, 2009, 22 (2): 181- 186. |
26 | 陈梓涵. 九段沙潮汐盐沼湿地 CO2 通量及影响机制研究 [D]. 上海: 华东师范大学. 2020. |
27 | ZHANG G L, ZHANG J, LIU S M, et al. Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: Riverine input, sediment release and atmospheric fluxes. Biogeochemistry, 2008, 91 (1): 71- 84. |
28 | 翁笑艳, 林美爱, 严颖. 地表水浮游植物叶绿素 a 测定方法比较研究. 中国环境监测, 2009, 25 (3): 36- 39. |
29 | 林罗敏, 唐鹊辉, 彭亮, 等. 浮游植物叶绿素 a 的微波法研究及其与反复冻融法的比较. 湖泊科学, 2016, 28 (5): 1148- 1152. |
30 | TAN L S, GE Z M, LI S H, et al. Reclamation-induced tidal restriction increases dissolved carbon and greenhouse gases diffusive fluxes in salt marsh creeks. Science of the Total Environment, 2021, 773, 145684. |
31 | 晏维金, 王蓓, 李新艳, 等. 河流溶存 N2O 的环境化学过程及其在水-气界面交换过程的研究 . 农业环境科学学报, 2008, 27 (1): 15- 22. |
32 | SANDER R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 2015, 15 (8): 4399- 4981. |
33 | WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography Methods, 2014, 12 (6): 351- 362. |
34 | RAYMOND P A, COLE J J. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. Estuaries, 2001, 24 (2): 312- 317. |
35 | 吴琼. 九段沙湿地自然保护区及其附近水体浮游植物的研究 [D]. 上海: 上海师范大学. 2009. |
36 | 黄国宏, 李玉祥, 陈冠雄, 等. 环境因素对芦苇湿地 CH4排放的影响 . 环境科学, 2001, 22 (1): 1- 5. |
37 | YVON-DUROCHER G, ALLEN A P, BASTVIKEN D, et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 2014, 507 (7493): 488- 491. |
38 | NATCHIMUTHU S, SUNDGREN I, GÅIFALK M, et al. Spatio-temporal variability of lake CH4 fluxes and its influence on annual whole lake emission estimates . Limnology and Oceanography, 2016, 61 (S1): S13- S26. |
39 | HARLEY J F, CARVALHO L, DUDLEY B, et al. Spatial and seasonal fluxes of the greenhouse gases N2O, CO2 and CH4 in a UK macrotidal estuary . Estuarine Coastal and Shelf Science, 2015, 153, 62- 73. |
40 | 姜欢欢, 孙志高, 王玲玲, 等. 秋季黄河口滨岸潮滩湿地系统 CH4通量特征及影响因素研究 . 环境科学, 2012, 33 (2): 565- 573. |
41 | Sun Z G, JIANG H H, WANG L L, et al. Seasonal and spatial variations of methane emissions from coastal marshes in the northern Yellow River estuary, China. Plant and Soil, 2013, 369 (1/2): 317- 333. |
42 | CHEN Q F, GUO B B, ZHAO C S, et al. Characteristics of CH4 and CO2 emissions and influence of water and salinity in the Yellow River delta wetland, China . Environmental Pollution, 2018, 239, 289- 299. |
43 | 曾从盛, 王维奇, 仝川. 不同电子受体及盐分输入对河口湿地土壤甲烷产生潜力的影响. 地理研究, 2008, 27 (6): 1321- 1330. |
44 | BARTLETT K B, BARTLETT D S, HARRISS R C, et al. Methane emissions along a salt marsh salinity gradient. Biogeochemistry, 1987, 4 (3): 183- 202. |
45 | KLÜBER H. Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii . FEMS Microbiology Ecology, 1998, 25 (4): 331- 339. |
46 | DEPPE M, KNORR K H, MCKNIGHT D M, et al. Effects of short-term drying and irrigation on CO2 and CH4 production and emission from mesocosms of a northern bog and an alpine fen . Biogeochemistry, 2010, 100 (1/2/3): 89- 103. |
47 | CHEN H, WU N, WANG Y F, et al. Inter-annual variations of methane emission from an open fen on the Qinghai-Tibetan Plateau: A three-year study. PLoS One, 2013, 8 (1): e53878. |
48 | 仝川, 曾从盛, 王维奇, 等. 闽江河口芦苇潮汐湿地甲烷通量及主要影响因子. 环境科学学报, 2009, 29 (1): 207- 216. |
49 | 祝栋林. 太湖及玄武湖甲烷气体产生、释放及影响机制研究 [D]. 南京: 南京大学. 2012. |
50 | 何凯, 王洪伟, 胡晓康, 等. 巢湖不同富营养化区域甲烷排放通量与途径. 中国环境科学, 2021, 41 (7): 3306- 3315. |
51 | WANG D Q, CHEN Z L, SUN W W, et al. Methane and nitrous oxide concentration and emission flux of Yangtze Delta plain river net. Science in China Series B: Chemistry, 2009, 52 (5): 652- 661. |
52 | ABRIL G, BORGES A V. Carbon dioxide and methane emissions from estuaries [M]// TREMBLAY A, VARFALVY L, ROEHM C, et al. Greenhouse Gas Emissions-Fluxes and Processes. Berlin, Heidelberg : Springer Verlag , 2005: 187-207. |
53 | RHEE T S, KETTLE A J, ANDREAE M O, et al. Methane and nitrous oxide emissions from the ocean: A reassessment using basin-wide observations in the Atlantic. Journal of Geophysical Research Atmospheres, 2009, 114 (D12): 1- 20. |
54 | 马立杰, 崔迎春. 南海中部和北部上层海水中溶存甲烷浓度及海气交换通量. 热带海洋学报, 2013, 32 (2): 94- 101. |
55 | COTOVICZ L C, KNOPPER B A, BRANDINI N, et al. Spatio-temporal variability of methane (CH4) concentrations and diffusive fluxes from a tropical coastal embayment surrounded by a large urban area (Guanabara Bay, Rio de Janeiro, Brazil) . Limnology and Oceanography, 2016, 61 (S1): S238- S252. |
56 | CALL M, MAHER D T, SANTOS I R, et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochimica et Cosmochimica Acta, 2015, 150, 211- 225. |
57 | LINTO N, BARNES J, RAMACHANDRAN R, et al. Carbon dioxide and methane emissions from mangrove associated waters of the Andaman Islands, Bay of Bengal. Estuaries and Coasts, 2014, 37 (2): 381- 398. |
58 | 李佩佩. 黄河口及黄、渤海溶存甲烷和氧化亚氮的分布与释放通量 [D]. 山东 青岛: 中国海洋大学, 2010. |
59 | YANG W B, YUAN C S, TONG C, et al. Diurnal variation of CO2, CH4, and N2O emission fluxes continuously monitored in-situ in three environmental habitats in a subtropical estuarine wetland . Marine Pollution Bulletin, 2017, 119 (1): 289- 298. |
60 | RAJKUMAR A N, BARNES J, RAMESH R, et al. Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India. Marine Pollution Bulletin, 2008, 56 (12): 2043- 2051. |
61 | SAWAKUCHI H O, BASTVIKEN D, SAWAKUCHI A, et al. Methane emissions from Amazonian Rivers and their contribution to the global methane budget. Global Change Biology, 2014, 20 (9): 2829- 2840. |
62 | TILBROOK B D, KARL D M. Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre. Marine Chemistry, 1995, 49 (1): 51- 64. |
63 | 张桂玲, 张经. 海洋中溶存甲烷研究进展. 地球科学进展, 2001, 16 (6): 829- 835. |
64 | JAYAKUMAR D A, NAQVI S W A, NARVEKAR P V, et al. Methane in coastal and offshore waters of the Arabian Sea. Marine Chemistry, 2001, 74 (1): 1- 13. |
[1] | Xiang LI, Huimin TIAN, Jingying WU, Siyu CHEN, Mingming ZHAO, Ping XU, Xuechu CHEN, Wenhui YOU. Distribution characteristics and influencing factors of crabs and crab burrows in the Fengxian coastal wetland [J]. Journal of East China Normal University(Natural Science), 2021, 2021(2): 160-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||