J* E* C* N* U* N* S* ›› 2025, Vol. 2025 ›› Issue (2): 141-153.doi: 10.3969/j.issn.1000-5641.2025.02.014
• Environmental Monitoring Technologies and Evaluation Analysis • Previous Articles
Ke YE1, Bo TIAN1,*(), Yuchun WANG2
Received:
2024-02-19
Accepted:
2024-04-28
Online:
2025-03-25
Published:
2025-03-27
Contact:
Bo TIAN
E-mail:btian@sklec.ecnu.edu.cn
CLC Number:
Ke YE, Bo TIAN, Yuchun WANG. Development of estuarine tidal flat vegetation index based on Sentinel-2 satellite remote sensing[J]. J* E* C* N* U* N* S*, 2025, 2025(2): 141-153.
Table 1
List of commonly used vegetation indices"
植被指数 | 描述 | 公式 | 参考文献 |
ARVI | 使用蓝波段来减少大气影响, 适用于大气气溶胶含量高的区域 | [ | |
EVI | 使用蓝波段校正大气和土壤影响, 优化了植被高覆盖度区域出现的NDVI饱和现象 | [ | |
GDVI | 在低覆盖度植被区域具有高敏感性的特点和更大的动态范围 | [ | |
GRNDVI | 与LAI相关性高, 绿波段的加入使得其对LAI的变化反应敏感 | [ | |
MSAVI | 较好消除了土壤背景的影响 | [ | |
NDVI | 应用最为广泛的植被指数, 在高覆盖度植被区域易饱和, 敏感性降低 | [ | |
VARI | 相较于NDVI, 在中高覆盖度植被区域对覆盖度变化的敏感性增加 | [ | |
WDRVI | 相较于NDVI, 在中高LAI值下, 对LAI变化的敏感性增加 | [ |
Table 2
Correlation analysis of the relationship between commonly used vegetation indices and fractional vegetation cover"
植被指数 | 线性模型 | 对数模型 | 指数模型 | |||||
R2 | R2 | R2 | ||||||
GRNDVI | ||||||||
NDVI | ||||||||
WDRVI | ||||||||
GDVI | ||||||||
MSAVI | ||||||||
ARVI | ||||||||
EVI | ||||||||
VARI |
Table 3
Correlation and sensitivity analysis of the relationship between new vegetation indices and fractional vegetation cover"
组合方式 | R2 | 拟合方程 | |
GRNDVI_NDWI | |||
GRNDVI_CIWI | |||
GRNDVI | |||
NDVI | |||
NDVI_CIWI | |||
NDVI_NDWI |
Table 4
Statistics of vegetation indices calculations"
植被指数 | 植被区域 | 光滩区域 | 水体区域 | |||||
均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | |||
ETFVI | ||||||||
ARVI | ||||||||
EVI | ||||||||
GDVI | ||||||||
GRNDVI | ||||||||
MSAVI | ||||||||
NDVI | ||||||||
VARI | ||||||||
WDRVI |
Table 5
Accuracy verification for the distribution of tidal flat vegetation in the Yangtze River Estuary"
准确率 | 精确率 | 召回率 | F1值 | 准确率 | 精确率 | 召回率 | F1值 | |||
ETFVI | EVI | |||||||||
GRNDVI | WDRVI | |||||||||
GDVI | MSAVI | |||||||||
NDVI | VARI | |||||||||
ARVI |
Table 6
Verification of inversion results of fractional vegetation cover of tidal flats in the Yangtze River Estuary"
ETFVI | MSAVI | |||||||
GRNDVI | ARVI | |||||||
NDVI | EVI | |||||||
WDRVI | VARI | |||||||
GDVI |
1 | 王思, 张路路, 林伟彪, 等.. 基于MODIS-归一化植被指数的广东省植被覆盖与土地利用变化研究. 生态学报, 2022, 42 (6): 2149- 2163. |
2 | 赵桔超, 杨昆, 朱彦辉, 等.. 1998—2009年洞里萨湖流域湿地时空变化特征研究. 西南林业大学学报(自然科学), 2019, 39 (6): 130- 136. |
3 | BANNARI A, MORIN D, BONN F, et al.. A review of vegetation indices. Remote Sensing Reviews, 1995, 13 (1/2): 95- 120. |
4 | PEARSON R L, MILLER L D.. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Remote Sensing of Environment, 1972, 8 (2): 1355- 1379. |
5 | 张杰. 长江口潮滩植被检测及时空变化的遥感研究 [D]. 上海: 华东师范大学, 2007. |
6 | DAY J W Jr, BOESCH D F, CLAIRAIN E J, et al.. Restoration of the Mississippi Delta: Lessons from hurricanes Katrina and Rita. Science, 2007, 315 (5819): 1679- 1684. |
7 | LI H, REYNOLDS J F.. A new contagion index to quantify spatial patterns of landscapes. Landscape Ecology, 1993, 8 (3): 155- 162. |
8 | FINLAYSON M, CRUZ R D, DAVIDSON N, et al.. Millennium ecosystem assessment: Ecosystems and human well-being: Wetlands and water synthesis. Data Fusion Concepts & Ideas, 2005, 656 (1): 87- 98. |
9 | TIAN B, WU W T, YANG Z Q, et al.. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010. Estuarine, Coastal and Shelf Science, 2016, 170, 83- 90. |
10 | WU W.. The generalized difference vegetation index (GDVI) for dryland characterization. Remote Sensing, 2014, 6 (2): 1211- 1233. |
11 | 许政勇, 孙斌, 张王菲, 等.. 基于优化三角形植被指数(TVI)的灌丛化草原植被地上生物量遥感估测方法研究. 草业学报, 2023, 32 (10): 1- 14. |
12 | LU J B, ZHANG Y.. Spatial distribution of an invasive plant Spartina alterniflora and its potential as biofuels in China. Ecological Engineering, 2013, 52, 175- 181. |
13 | KIRWAN M L, PATRICK MEGONIGAL J.. Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 2013, 504 (7478): 53- 60. |
14 | GEDAN K B, KIRWAN M L, WOLANSKI E, et al.. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Climatic Change, 2011, 106 (1): 7- 29. |
15 | BROMBERG GEDAN K, SILLIMAN B R, BERTNESS M D.. Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science, 2009, 1, 117- 141. |
16 | 黄桂林, 何平, 侯盟.. 中国河口湿地研究现状及展望. 应用生态学报, 2006, 17 (9): 1751- 1756. |
17 | 舒敏彦. 海岸带盐沼植被指数构建研究[D]. 上海: 华东师范大学, 2017. |
18 | 贾明明. 1973 ~ 2013年中国红树林动态变化遥感分析 [D]. 长春: 中国科学院研究生院(东北地理与农业生态研究所), 2014. |
19 | JIA M M, WANG Z M, MAO D H, et al.. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sensing of Environment, 2021, 255, 112285. |
20 | 刘瑜, 韩震, 郭永飞.. 植被指数在长江口潮滩湿地植被信息提取中的应用研究. 遥感技术与应用, 2009, 24 (6): 777- 783. |
21 | TERRANCE BOOTH D, COX S E, BERRYMAN R D.. Point sampling digital imagery with ‘SamplePoint’. Environmental Monitoring and Assessment, 2006, 123 (1/2/3): 97- 108. |
22 | KAUFMAN Y J, TANRE D.. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30 (2): 261- 270. |
23 | HUETE A, DIDAN K, MIURA T, et al.. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002, 83 (1/2): 195- 213. |
24 | WANG F M, HUANG J F, TANG Y L, et al.. New vegetation index and its application in estimating leaf area index of rice. Rice Science, 2007, 14 (3): 195- 203. |
25 | QI J, CHEHBOUNI A, HUETE A R, et al.. A modified soil adjusted vegetation index. Remote Sensing of Environment, 1994, 48 (2): 119- 126. |
26 | ROUSE J W Jr, HAAS R H, DEERING D, et al. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation [R]. Washington, DC: NASA, 1974. |
27 | GITELSON A A, KAUFMAN Y J, STARK R, et al.. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2002, 80 (1): 76- 87. |
28 | GITELSON A A.. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 2004, 161 (2): 165- 173. |
29 | 谢宇. 回归分析[M]. 2版. 北京: 社会科学文献出版社, 2013. |
30 | VIÑA A, GITELSON A A, NGUY-ROBERTSON A L, et al.. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 2011, 115 (12): 3468- 3478. |
31 | GITELSON A.. Remote estimation of crop fractional vegetation cover: The use of noise equivalent as an indicator of performance of vegetation indices. International Journal of Remote Sensing, 2013, 34 (17): 6054- 6066. |
32 | 赵欣怡. 基于时序光学和雷达影像的中国海岸带盐沼植被分类研究 [D]. 上海: 华东师范大学, 2020. |
33 | 舒敏彦, 田波, 丁丽霞, 等.. 长江口潮滩地带典型盐沼植被光谱特征分析. 浙江农林大学学报, 2019, 36 (1): 107- 117. |
34 | 安德帅, 徐丹丹, 刘月, 等.. 高光谱与拟合多光谱植被指数反演武夷山亚高山草甸LAI的对比研究. 生态科学, 2022, 41 (5): 187- 196. |
35 | JIANG Z Y, HUETE A R, CHEN J, et al.. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment, 2006, 101 (3): 366- 378. |
36 | MCFEETERS S K.. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 1996, 17 (7): 1425- 1432. |
37 | 莫伟华, 孙涵, 钟仕全, 等.. MODIS水体指数模型(CIWI)研究及其应用. 遥感信息, 2007, 5 (2): 16- 21. |
38 | 汪小钦, 王苗苗, 王绍强, 等.. 基于可见光波段无人机遥感的植被信息提取. 农业工程学报, 2015, 31 (5): 152- 157. |
39 | 赵欣怡, 田波, 牛莹, 等.. Sentinel-1时序后向散射特征的海岸带盐沼植被分类——以长江口为例. 遥感学报, 2022, 26 (4): 672- 682. |
40 | 史宇骁, 李阳, 孟翊, 等.. 1989—2020年长江口九段沙湿地格局演变及影响因素. 应用生态学报, 2022, 33 (8): 2229- 2236. |
41 | 张婷玉, 袁琳, 张超, 等.. 海岸工程及生物入侵对上海南汇东滩海岸带格局演变的影响. 华东师范大学学报(自然科学版), 2023, (3): 167- 180. |
42 | 杨斌. 高氮背景下长江口南汇边滩互花米草盐沼N2O和CH4通量及影响因素 [D]. 上海: 华东师范大学, 2021. |
[1] | Hao CHEN, Xianqiang HE, Run LI, Fang CAO. Machine learning-based remote sensing retrievals of dissolved organic carbon in the Yangtze River Estuary [J]. Journal of East China Normal University(Natural Science), 2024, 2024(4): 123-136. |
[2] | Zhi JIN, Jianrong ZHU, Wei QIU. Effects of cascade reservoirs in the Yangtze River Basin on estuarine saltwater intrusion and freshwater resources during late summer and early autumn [J]. Journal of East China Normal University(Natural Science), 2024, 2024(1): 90-103. |
[3] | Jiaming CHEN, Shiming WANG, Rongrong YANG, Ziyan CHEN, Xia LIANG, Lijun HOU. Temperature adaptability of dark carbon fixation in seawater fromthe Yangtze River Estuary [J]. Journal of East China Normal University(Natural Science), 2024, 2024(1): 104-112. |
[4] | Zhipeng LI, Jianrong ZHU. Numerical simulation of the North Branch regime change impact on saltwater intrusion in the Yangtze River Estuary from 2007 to 2016 [J]. Journal of East China Normal University(Natural Science), 2022, 2022(3): 109-124. |
[5] | Zhiyong YOU, Bolin LIU, Cheng LIU, Dengzhou GAO. Temperature sensitivity and controlling factors of nitrogen fixation processes in sediments of the Yangtze River Estuary [J]. Journal of East China Normal University(Natural Science), 2022, 2022(3): 101-108. |
[6] | QIAN Yurong;;LI Jianlong;GAN Xiaoyu;YANG Feng. Research of road factors in urban expansion basedon BP network: A case study of Zhangjiagang city [J]. Journal of East China Normal University(Natural Sc, 2009, 2009(3): 63-71. |
[7] | ZHANG Jie;SHEN Fang;LIU Zhi-guo. Spectral Analysis and Remote Sensing Detection of Tidal Shoal′sVegetation in the Estuary of Yangtse River(Chinese) [J]. Journal of East China Normal University(Natural Sc, 2007, 2007(4): 42-48. |
[8] | ZHANG Heng;LU Jian-jian. Calculation of the Taxonomic Diversity of Fish Communities in the Yangtze River Estuary(Chinese) [J]. Journal of East China Normal University(Natural Sc, 2007, 2007(2): 11-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||