DENG Yi-jun. Maximum-norm superapproximations for tensor-product quadratic rectangular finite elements in 4D[J]. Journal of East China Normal University(Natural Sc, 2011, 2011(4): 135-141.
{1}GOODSELL, G. Pointwise superconvergence of the gradient for the linear tetrahedralelement[J]. Numer Methods Partial Differential Equations, 1994, 10: 651-666.{2}LIN Q, LU T, SHEN S. Maximum norm estimate, extrapolation and optimal point of stresses for finite element methods on strongly regular triangulation[J]. J Comp Math, 1983(1): 376-383.{3}林群, 朱起定. 有限元的预处理和后处理理论[M]. 上海: 上海科技出版社, 1994.LIN Q, ZHU Q D. The Preprocessing and Postprocessing for the Finite Element Method[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1994.{4}WAHLBIN L B. Superconvergence in Galerkin Finite Element Methods[M]. Berlin: Springerverlag, 1995.{5}CHEN L. Superconvergence of tetrahedral linear finite elements[J]. Numer Anal Model Inter J, 2006(3): 273-282.{6}LIN R C, ZHANG Z M. Natural superconvergent points in 3D finite elements [J]. SIAM Numer Anal J, 2008, 46(3): 1281-1297.{7}YAN N N. Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods[M]. Beijing: Science Press, 2008.{8}LIU J H, ZHU Q D. Uniform superapproximation of the derivative of tetrahedral quadratic finite element approximation[J]. Comput Math J, 2005, 23(1): 75-82.{9}刘经洪, 朱起定. 三维二次有限元梯度最大模的超逼近[J]. 数学物理学报, 2006, 26(3): 458-466.LIU J H, ZHU Q D. Maximum-norm Superapproach of the Gradient for Quadratic Finite Elements in Three Dimensions[J]. Acta Mathematiea Scientia, 2006, 26(3): 458-466.{10}刘经洪. 三维问题有限元方法的超逼近[D]. 长沙:湖南师范大学, 2004.LIU J H. Superapproximation for finite elements of three dimensional problems[D]. Changsha: Hunan Normal University, 2004.