LI Wei, ZHOU Sheng-wu. Numerical method for option pricing under jump-diffusion process[J]. Journal of East China Normal University(Natural Sc, 2012, 2012(4): 27-35.
{1} BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Political Economy, 1973, 81: 637-659.{2} MERTON R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976, 3: 125-144.{3} CONT R, VOLTCHKOVA E. A finite difference scheme for option pricing in jump diffusion and exponential Lévy models[J]. SIAM Journal on Numerical Analysis, 2005, 43: 1596-1626.{4} CARR P, MAYO A. On the numerical evaluation of option prices in jump diffusion processes[J]. European Journal of Finance, 2007, 13: 353-372.{5} TOIVANEN J, SALMI S. An iterative method for pricing American options under jump-diffusion models[J]. Applied Numerical Mathematics, 2011, 61: 821-831.{6} TANGMAN D Y, GOPAUL A, BHURUTH M. Exponential time integration and Chebychev discretisation schemes for fast pricing of options[J]. Applied Numerical Mathematics, 2008, 58: 1309-1319.{7} ZVAN R, VETZAL K R, FORSYTH P A. PDE methods for pricing barrier options[J]. Journal of Economic Dynamics and Control, 2000, 24: 1563-1590.{8} WADE B A, KHALIQ A Q M, YOUSUF M, et al. On smoothing of the Crank-Nicolson scheme and higher order schemes for pricing barrier options[J]. Journal of Computational and Applied Mathematics, 2007, 204: 144-158.{9} 甄莉君, 张兴永, 牛成虎, 黎伟. 挂钩黄金理财产品定价的数值方法[J]. 华东师范大学学报: 自然科学版, 2011, 5: 25-32.{10} KWOK Y K. Mathematical models of financial derivatives[M]. Berlin: Springer-Verlag Press, 2008.{11} THOMAS J W. Numerical partial differential equations: finite difference methods[M]. Berlin: Springer-Verlag Press, 1995.{12} COMPANY R, $\mathrm{J\acute{O}DAR}$ L, PINTOS J R. Computing option pricing models under transaction costs[J]. Computers and Mathematics with Applications, 2010, 59: 651-662.{13} SPIKE T L, SUN H W. Fourth order compact boundary value method for option pricing with jumps[J]. Advances in Applied Mathematics and Mechanics, 2009, 1(6): 845-861.{14} 王明新. 算子半群与发展方程[M]. 北京: 科学出版社, 2006.{15} 王仁宏, 朱功勤. 有理函数逼近及其应用[M]. 北京: 科学出版社, 2004.{16} KHALIQ A Q M, MARTN-VAQUERO J, WADE B A, et al. Smoothing schemes for reaction-diffusion systems with nonsmooth data[J]. Journal of Computational and Applied Mathematics, 2009, 223: 374-386.{17} MOHAMMAD S. Smoothing of Crank-Nicolson scheme for the two-dimensional diffusion with an integral condition[J]. Applied Mathematics and Computation, 2009, 214: 512-522.{18} KHALIQ A Q M, VOSS D A, YOUSUF M. Pricing exotic options with L-stable\ $\mathrm{Pad\acute{e}}$ schemes[J]. Journal of Banking and Finance, 2007, 31: 3438-3461.{19} YOUSUF M. On the class of high order time stepping schemes based on\ $\mathrm{Pad\acute{e}}$ approximations for the numerical solution of Burgers' equation [J]. AppliedMathematics and Computation, 2008, 205: 442-453.{20} KHALIQ A Q M, TWIZELL E H, VOSS D A. On parallel algorithms for semidiscretized parabolic partial differential equations based on subdiagonal\ $\mathrm{Pad\acute{e}}$ approximations[J]. Numerical Methods for Partial Differential Equations, 1993, 9: 107-116.{21} MOHAMMAD S. Fourth order positively smoothed $\mathrm{Pad\acute{e}}$\ schemes for parabolic partial differential equations with nonlocal boundary conditions[J]. Applied Mathematical Sciences, 2010, 42: 2065-2080.{22} YOUSUF M. Efficient L-stable method forparabolic problems with application to pricing American options under stochastic volatility[J]. Applied Mathematics and Computation, 2009, 213: 121-136.