[1] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.[2] BURKE A. Ultracapacitors: why, how, and where is the technology[J]. Journal of Power Sources, 2000, 91(1): 37-50.[3] KOTZ R, CARLEN M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15): 2483-2498.[4] PANG S C, ANDERSON M A, CHAPMAN T W. Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide[J]. Journal of the Electrochemical Society, 2000, 147(2): 444-450.[5] WANG Y H, ZHITOMIRSKY I. Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors[J]. Langmuir, 2009, 25(17): 9684-9689.[6] CHEN S, ZHU J W, HAN Q F, et al. Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties[J]. Crystal Growth Design, 2009, 9(10): 4356-4361.[7] NAGARAJAN N, HUMADI H, ZHITOMIRSKY I. Cathodic electrodeposition of MnOx films for electrochemical supercapacitors[J]. Electrochimica Acta, 2006, 51(15): 3039-3045.[8] AN G M, YU P, XIAO M J, et al. Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors[J]. Nanotechnology, 2008, 19(27): 275709.[9] PATIL U M, GURAV K V, FULARI V J, et al. Characterization of honeycomb-like beta-Ni(OH)2 thin films synthesized by chemical bath deposition method and their supercapacitor application[J]. Journal of Power Sources, 2009, 188(1): 338-342.[10] ROBERTS M E, WHEELER D R, MCKENZIE B B, et al. High specific capacitance conducting polymer supercapacitor electrodes based on poly(tris(thiophenylphenyl)amine)[J]. Journal of Materials Chemistry, 2009, 19(38): 6977-6979.[11] ZHANG K, ZHANG L L, ZHAO X S, et al. Graphene/polyaniline nanoriber composites as supercapacitor electrodes[J]. Chemistry of Materials, 2010, 22(4): 1392-1401.[12] FANG Y, LIU J, YU D J, et al. Self-supported supercapacitor membranes: polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition[J]. Journal of Power Sources, 2010, 195(2): 674-679.[13] DAI H J, WONG E W, LIEBER C M. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes[J]. Science, 1996, 272(5261): 523-526.[14] EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382(6586): 54-56.[15] NIU C M, SICHEL E K, HOCH R, et al. High power electrochemical capacitors based on carbon nanotube electrodes[J]. Applied Physics Letters, 1997, 70(11): 1480-1482.[16] SUN D, RILEY A E, CADBY A J, et al. Hexagonal nanoporous germanium through surfactant-driven self-assembly of Zintl clusters[J]. Nature, 2006, 441(7097): 1126-1130.[17] ATTARD G S, BARTLETT P N, COLEMAN N R B, et al. Mesoporous platinum films from lyotropic liquid crystalline media[J]. Science, 1997, 278: 838-840.[18] GANESH V, LAKSHMINARAYANAN V, Preparation of high surface area nickel electrodeposit using a liquid crystal template technique[J]. Electrochimica Acta, 2004, 49(21): 3561-3572.[19] NELSON P A, OWEN J R, A high-performance supercapacitor/battery hybrid incorporating templated mesoporous electrodes[J]. Journal of the Electrochemistry Society, 2003, 150(10): A1313-A1317.[20] WU M S, WANG M J. Nickel oxide film with open macropores fabricated by surfactant-assisted anodic deposition for high capacitance supercapacitors[J]. Chemical Communications, 2010, 46(37): 6968-6970.[21] INAMDAR A I, KIM Y S, PAWAR S M, et al. Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors[J]. Journal of Power Sources, 2011, 196(4): 2393-2397.[22] CONWAY B E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications[M]. New York: Plenum, 1999.[23] MIAO F J, TAO B R, SUN L, et al. Capacitive humidity sensing behavior of ordered Ni/Si microchannel plate nanocomposites[J]. Sensors and Actuators: A Physical, 2010, 160(1): 48-53.[24] DEKI S, AOI Y, MIYAKE Y, et al. Novel wet process for preparation of vanadium oxide thin film[J]. Materials Research Bulletin, 1996, 31(11): 1399-1406.[25] KAMATH P V, DIXIT M, INDIRA L, et al. Stabilized alpha-Ni(OH)2 as electrode material for alkaline secondary cells[J]. Journal of the Electrochemical Society, 1994, 141(11): 2956-2959.[26] JAYASHREE R S, KAMATH P V. Suppression of the αβ-nickel hydroxide transformation in concentrated alkali: Role of dissolved cations[J]. Journal of Applied Electrochemistry, 2001, 31(12): 1315-1320.[27] ZHENG J P, CYGAN P J, JOW T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. Journal of the Electrochemical Society, 1995, 142(8): 2699-2703.[28] JIANG J H, KUCERNAK A. Electrochemical supercapacitor material based on manganese oxide: preparation and characterization[J]. Electrochimica Acta, 2002, 47(15): 2381-2386.[29] ZHAO D D, BAO S J, ZHOU W H, et al. Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor[J]. Electrochemistry Communications, 2007, 9(5): 869-874.[30] GAMBY J, TABERNA P L, SIMON P, et al. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors[J]. Journal of Power Sources, 2001, 101(1): 109-116.[31] LOZANO-CASTELLO D, CAZORLA-AMOROS D, LINARES-SOLANO A, et al. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte[J]. Carbon, 2003, 41(9): 1765-1775.[32] YUAN D, CI P L, TIAN F, et al. Large-size P-type silicon microchannel plates prepared by photoelectrochemical etching[J]. Journal of Microlithography, Microfabrication, and Microsystems, 2009, 8(3): 033012. |