Wavelet estimation for locally self-similar processes
LU Zhi-ping 1, TAO Qin-ying 2
1. Research Center of International Finance and Risk Management, East China Normal University, Shanghai 200241, China; 2. Department of Mathematics, East China Normal University, Shanghai 200241, China
LU Zhi-ping, TAO Qin-ying. Wavelet estimation for locally self-similar processes[J]. Journal of East China Normal University(Natural Sc, 2012, 2012(5): 76-84.
{1}WHITCHER B, JENSEN M J. Wavelet estimation of a local long memoryparameter[J]. Exploration Geophysics, 2000, 31: 94-103.{2}JENSEN M J. Using wavelets to obtain a consistent ordinary leastsquares estimator of the long memory parameter[J]. Journal ofForecasting, 1999, 18: 17-32.{3}CAVANAUGH J E, WANG Y, DAVIS J W. Locally self-similar processesand their wavelet analysis[M]. Handbook of statistics 21: StochasticProcesses: Modeling and Simulation. Amsterdam: Elsevier Science,2002.{4}COEURJOLLY J F. Hurst exponent estimation of locally self-similarGaussian processes using sample quantiles[J]. Annals of Statistics,2008, 36(3): 1404-1434.{5}LU Z, GUEGAN D. Estimation of time-varying long memory parameterusing wavelet method[J]. Communications in Statistics-Simulation andComputation, 2011, 40: 596-613.{6}PERCIVAL D B, WALDEN A T. Wavelet methods for time seriesanalysis[M]. Cambridge: Cambridge University Press, 2000.{7}PERCIVAL D B, GUTTORP P. Long Memory Processes, the Allan Varianceand Wavelets[M]. Wavelets in Geophysics. New York: Academic Press,1994.