[1]POLLETT P K. Quasi stationary distributions: A bibliography R/OL].(2015-03-13)2015-03-30].http://www.maths.uq.edu.au/\simpkp/papers/qsds/qsds.pdf.[2]DARROCH J N, SEBETA E. On quasi-stationary distributions in absorbing discrete-time finite Markov chains J]. Journal of Applied Probability, 1965(2): 88-100.[3]DARROCH J N, SEBETA E. On quasi-stationary distributions in absorbing continuous-time finite Markov chains J]. Journal of Applied Probability, 1967(4): 192-196.[4]SENETA E, VERE-JONES D. On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states[J]. Journal of Applied Probability, 1966(3): 403-434.[5]FLASPOHLER D C. Quasi-stationary distributions for absorbing continuous-time denumerable Markov chains J]. Annals of the Institute of Statistical Mathematics, 1974, 26(1): 351-356.[6]PAKES A G. Quasi-stationary laws for Markov processes: examples of an always proximate absorbing state J]. Advances in Applied Probability, 1995, 27: 120-145.[7]KINGMAN J F C. The exponential deacy of Markov transition probabilities J]. Proceedings of the London Mathematical Society,1963, 13: 337-358.[8]ANDERSON W J. Continuous-Time Markov Chains: An Applications-Oriented Approach M]. New York: Springer, 1991.[9]VAN DOORN E A. Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes J]. Advances in Applied Probability, 1991, 23: 683--700.[10]ZHANG H J, ZHU Y X. Domain of attraction of the quasistationary distribution for birth and death processes J]. Journal of Applied Probability, 2013, 50: 114-126.[11]CHEN A Y, ZHANG H J. Existence, uniqueness, and constructions for stochastically monotone Q-processes J]. Southeast Asian Bulletin of Mathematics, 1999, 23: 559-583.[12]JACKA S D, ROBERS G O. Weak convergrnce of conditioned processes on a countable state space J]. Journal of Applied Probability, 1995,32: 902-916.[13]VERE-JONES D. Ergodic Properties of non-negative matrices I J].Pacific Journal of Mathematics, 1967, 22(2): 361-385.[14]KARLIN S, MCGREGOR J L. The classification of birth and death processes J]. Transactions of the American Mathematical Society,1957, 86: 366-400.[15]KARLIN S, TAYLOR H M. A First Course in Stochastic Processes M].2nd ed. New York: Academic press, 1975. |