[ 1 ] RAO C R, MITRA S K. Generalized inverse of a matrix and its applications [C]//Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. 1972, 1: 601-620.
[ 2 ] 郭美华, 刘丁酉. 分块 2 次幂零矩阵的广义 Schur 补 [J]. 武汉大学学报 (理学版), 2015, 61(6): 563-567.
[ 3 ] TIAN Y G, TAKANE Y. More on generalized inverses of partitioned matrices with BanachiewiczõSchur forms[J]. Linear Algebra and its Applications, 2009, 430(5/6): 1641-1655.
[ 4 ] KALA R, KLACZYNSKI K. Generalized inverses of a sum of matrices [J]. SankhyR: The Indian Journal of Statistics, Series A, 1994, 56: 458-464.
[ 5 ] ZHANG F Z. The Schur Complement and Its Applications [M]. New York: Springer-Verlag New York Inc, 2005.
[ 6 ] OUELLETTE D V. Schur complements and statistics [J]. Linear Algebra and its Applications, 1981, 36: 187-295.
[ 7 ] ANDO T. Generalized Schur complements [J]. Linear Algebra and its Applications, 1979, 27: 173-186.
[ 8 ] MINAMIDE N. An extension of the matrix inversion lemma [J]. SIAM Journal on Algebraic and Discrete Methods, 1985, 6(3): 371-377.
[ 9 ] PRINGLE R M, RAYNER A A. Expressions for generalized inverses of a bordered matrix with application to the theory of constrained linear models [J]. SIAM Review, 1970, 12(1): 107-115. |