[1] ATICI F M, ELOE P W. Initial value problems in discrete fractional calculus[J]. Proc Amer Math Soc, 2009, 137: 981-989. [2] GRACE S R, AGARWAL R P, WONG P J Y, et al. On the oscillation of fractional differential equations [J]. Fract Calc Appl Anal, 2012, 15: 222-231. [3] CHEN D X. Oscillation criteria of fractional differential equations [J]. Advances in Difference Equations, 2012, 33: 1-10. [4] PODLUBNY I. Fractional differential equations [M]. San Diego: Academic Press, 1999. [5] HAN Z, ZHAO Y, SUN Y, et al. Oscillation for a class of fractional differential equation [J]. Discrete Dyn Nat Soc, 2013, 2013: 1-6. [6] 程金发, 分数阶差分方程理论[M]. 厦门: 厦门大学出版社, 2010. [7] LU W, GE W, ZHAO Z. Oscillatory criteria for third-order nonlinear difference equation with impulses [J]. Journal of Computational and Applied Mathematics 2010, 234(12): 3366-3372. [8] 芦伟, 葛渭高. 时标上二阶脉冲阻尼动力方程解的振动性和渐 近性[J]. 生物数学学报, 2013, 28(2):343-349. [9] 时宝, 张德存, 盖久明.微分方程理论及其应用[M]. 北京: 国防工业出版社, 2005. [10] 杨甲山, 黄劲. 时间模上一类二阶非线性动态方程振荡性的新准则[J]. 华东师范大学学报(自然科学版), 2015(3): 9-15. [11] 张晓建, 杨甲山. 时标上三阶时滞动力方程的振动性和渐近性[J]. 华东师范大学学报(自然科学版), 2014(3): 51-59. [12] 马晴霞, 刘安平. Oscillation criteria of nonlinear fractional differential equations with damping term [J]. 应用数学, 2016, 29(2): 291-297. [13] 孙一冰, 韩振来, 孙书荣, 等. 时间尺度上一类二阶具阻尼项的半线性中 立型时滞动力方程的振动性[J]. 应用数学学报, 2013, 36(3): 480-494. [14] ZHENG B. Oscillation for a class of nonlinear fractional differential equations with damping term[J]. J Adv Math Stud, 2013, 6: 107-115. [15] LI W N. Oscillation results for certain forced fractional difference equations with damping term [J]. Advances in Difference Equations, 2016, 70: 1-9. |