[1] SUMPER M, BRUNNER E. Learning from diatoms:Nature's tools for the production of nanostructured silica[J]. Advanced Functional Materials, 2010, 16(1):17-26.
[2] FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere:Integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374):237.
[3] SMETACEK V. Diatoms and the ocean carbon cycle[J]. Protist, 1999, 150(1):25-32.
[4] YEBRA D M, KⅡL S, DAM-JOHANSEN K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings[J]. Progress in Organic Coatings, 2004, 50(2):75-104.
[5] GAISER E E. The diatoms:Applications for the environmental and earth sciences[J]. Journal of Soils & Sediments, 2011, 30(7/8):103-104.
[6] JIANG H, ZHENG Y, RAN L, et al. Diatoms from the surface sediments of the South China Sea and their relationships to modern hydrography[J]. Marine Micropaleontology, 2004, 53(3/4):279-292.
[7] JIANG H, BJÖRCK S, RAN L, et al. Impact of the Kuroshio Current on the South China Sea based on a 115?000 year diatom record[J]. Journal of Quaternary Science, 2010, 21(4):377-385.
[8] NASSIF N, LIVAGE J. From diatoms to silica-based biohybrids[J]. Chemical Society Reviews, 2011, 40(2):849-59.
[9] FAN T X, CHOW S K, ZHANG D. Biomorphic mineralization:From biology to materials[J]. Progress in Materials Science, 2009, 54(5):542-659.
[10] GRACHEV M A, ANNENKOV V V, LIKHOSHWAY Y V. Silicon nanotechnologies of pigmented heterokonts[J]. Bioessays News & Reviews in Molecular Cellular & Developmental Biology, 2008, 30(4):328-37.
[11] FUHRMANN. Hammerzeh tut weh-diese und andere Zehendeformitäten[J]. Therapeutische Umschau, 2004, 61(7):417-420.
[12] SEUNG WON JUNG, OH YOUN KWON, JIN HWAN LEE, et al. Effects of water temperature and silicate on the winter blooming diatom Stephanodiscus hantzschii (Bacillariophyceae) growing in eutrophic conditions in the lower Han River, South Korea[J]. Journal of Freshwater Ecology, 2009, 24(2):219-226.
[13] MARTIN JÉZÉQUEL V, HILDEBRAND M, BRZEZINSKI M A. Silicon metabolism in diatoms:Implications for growth[J]. Journal of Phycology, 2010, 36(5):821-840.
[14] LEWIN J. Silicon metabolism in diatoms:5. Germanium dioxide, a specific inhibitor of diatom growth[J]. Phycologia, 1966, 6(1):1-12.
[15] EGGE J K, AKSNES D L. Silicate as regulating nutrient in phytoplankton competition[J]. Marine Ecology Progress, 1992, 83(2/3):281-289.
[16] 杨利敏. 舟形藻对造纸废水中COD去除效率及其影响因素的研究[D]. 武汉:华中师范大学, 2011.
[17] 李国忱, 刘录三, 汪星,等. 硅藻在河流健康评价中的应用研究进展[J]. 应用生态学报, 2012, 23(9):2617-2624.
[18] MOLINO P J, WETHERBEE R. The biology of biofouling diatoms and their role in the development of microbial slimes[J]. Biofouling, 2008, 24(5):365-379.
[19] WANG J, CAO S, DU C, et al. Underwater locomotion strategy by a benthic pennate diatom Navicula sp.[J]. Protoplasma, 2013, 250(5):1203-1212.
[20] DE BROUWER J F C, WOLFSTEIN K, STAL L J. Physical characterization and diel dynamics of different fractions of extracellular polysaccharides in an axenic culture of a benthic diatom[J]. European Journal of Phycology, 2002, 37(1):37-44.
[21] CALLOW J A, CALLOW M E. Trends in the development of environmentally friendly fouling-resistant marine coatings[J]. Nature Communications, 2011, 2(1):244.
[22] 陈琪. 海洋底栖硅藻胞外多聚物的分泌和粘附行为的研究[D]. 上海:上海海洋大学, 2016.
[23] 赵守涣. 丹皮酚和四种微结构硅胶材料对小舟形藻的抑制作用研究[D]. 上海:上海海洋大学, 2015.
[24] 杨强, 谢平, 徐军, 等. 河流型硅藻水华研究进展[J]. 长江流域资源与环境, 2011(s1):159-165.
[25] 郑丙辉, 曹承进, 张佳磊, 等. 三峡水库支流大宁河水华特征研究[J]. 环境科学, 2009, 30(11):3218-3226.
[26] 马美荣, 李朋富, 陈丽, 等. 盐度和营养限制对盐田底栖硅藻披针舟形藻生长及胞外多糖产率的影响[J]. 海洋湖沼通报, 2009(1):95-102.
[27] 郑维发, 王雪梅, 王义琴, 等. 四种营养盐对舟形藻(Navicula)BT001生长速率的影响[J]. 海洋与湖沼, 2007, 38(2):157-162.
[28] 刘菲菲, 冯慕华, 尚丽霞, 等. 温度对铜绿微囊藻(Microcystis aeruginosa)和鱼腥藻(Anabaena sp.)生长及胞外有机物产生的影响[J]. 湖泊科学, 2014, 26(5):780-788.
[29] 曲青梅. 舟形藻悬浮培养条件优化及营养成分分析[D]. 山东烟台:鲁东大学, 2015.
[30] BONDOC K G V, HEUSCHELE J, GILLARD J, et al. Selective silicate-directed motility in diatoms[J]. Nature Communications, 2016(7):10540.
[31] GUTIÉRREZ-MEDINA B, GUERRA A J, MALDONADO A I, et al. Circular random motion in diatom gliding under isotropic conditions[J]. Physical Biology, 2014, 11(6):066006.
[32] STOCKER R. Reverse and flick:Hybrid locomotion in bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7):2635-2636.
[33] XIE L, ALTINDAL T, CHATTOPADHYAY S, et al. From the cover:Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6):2246.
[34] JACKSON G A, KIØRBOE T. Zooplankton use of chemodetection to find and eat particles[J]. Marine Ecology Progress, 2004, 269(1):153-162.
[35] TITELMAN J, KIØRBOE T. Predator avoidance by nauplii[J]. Marine Ecology Progress, 2003, 247(1):137-149.
[36] HOWSE J R, JONES R A L, RYAN A J, et al. Self-motile colloidal particles:From directed propulsion to random walk[J]. Physical Review Letters, 2007, 99(4):048102.
[37] TAKAGI D, BRAUNSCHWEIG A B, ZHANG J, et al. Dispersion of self-propelled rods undergoing fluctuationdriven flips[J]. Physical Review Letters, 2013, 110(3):038301.
[38] VISWANATHAN G M, AFANASYEV V, BULDYREV S V, et al. Lévy flight search patterns of wandering albatrosses[J]. Nature, 1996, 381(6581):413-415.
[39] VISWANATHAN G M, RAPOSO E P, LUZ M G E D. Lévy flights and superdiffusion in the context of biological encounters and random searches[J]. Physics of Life Reviews, 2008, 5(3):133-150.
[40] UNDERWOOD G J C, BOULCOTT M, RAINES C A, et al. Environmental effects on exopolymer production by marine benthic diatoms:dynamics, changes in composition, and pathways of production[J]. Journal of Phycology, 2010, 40(2):293-304. |