[1] BOBADILLA J, ORTEGA F, HERNANDO A. Recommender systems survey[J]. Knowledge-Based Systems, 2013, 46(1):109-132.
[2] XU H L, WU X, LI X D, et al. Comparison study of Internet recommendation system[J]. Journal of Software, 2009, 20(2):350-363.
[3] HUSSEIN T. Context-Aware Recommender Systems 2011[C]//ACM Conference on Recommender Systems. ACM, 2011:349-350.
[4] MENG X W, XUN H U, WANG L C, et al. Mobile recommender systems and their applications[J]. Journal of Software, 2013, 24(1):91-108.
[5] ANDERSON C. The long tail[J]. Wired Magazine, 2004, 12(10):170-177.
[6] NEWMAN M E J. Power laws, Pareto distributions and Zipf's law[J]. Contemporary Physics, 2005, 46(5):323-351.
[7] YANG X W, STECK H, GUO Y, et al. On top-k recommendation using social networks[C]//Proceedings of the 6th ACM Conference on Recommender Systems. ACM, 2012:67-74.
[8] KHRIBI M K, JEMNI M, NASRAOUI O. Automatic recommendations for e-learning personalization based on web usage mining techniques and information retrieval[C]//Advanced Learning Technologies, 2008, ICALT'08, 8th IEEE International Conference on. IEEE, 2008:241-245.
[9] ABEL F, GAO Q, HOUBEN G J, et al. Analyzing user modeling on twitter for personalized news recommendations[C]//International Conference on User Modeling, Adaptation, and Personalization. Berlin:Springer, 2011:1-12.
[10] YAO B, LI F F, KUMAR P. Reverse furthest neighbors in spatial databases[C]//IEEE, International Conference on Data Engineering. IEEE, 2009:664-675.
[11] LIU J Q, CHEN H X, FURUSE K, et al. An efficient algorithm for arbitrary reverse furthest neighbor queries[C]//Asia-Pacific Web Conference. Berlin:Springer, 2012:60-72.
[12] WANG S L, CHEEMA M A, LIN X M, et al. Efficiently computing reverse k furthest neighbors[C]//Data Engineering (ICDE), 2016 IEEE 32nd International Conference on. IEEE, 2016:1110-1121.
[13] GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12):61-70.
[14] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th international conference on World Wide Web. ACM, 2001:285-295.
[15] XIAO P, SHAO L S, LI X R. Improved collaborative filtering algorithm in the research and application of personalized movie recommendations[C]//Intelligent Systems Design and Engineering Applications, 20134th International Conference on. IEEE, 2013:349-352.
[16] ZHAO Z D, SHANG M S. User-based collaborative-filtering recommendation algorithms on hadoop[C]//20103rd International Conference on Knowledge Discovery and Data Mining. IEEE, 2010:478-481.
[17] PIRASTEH P, JUNG J J, HWANG D. Item-based collaborative filtering with attribute correlation:A case study on movie recommendation[C]//Asian Conference on Intelligent Information and Database Systems. Cham:Springer, 2014:245-252.
[18] VOZALIS E G, MARGARITIS K G. Recommender systems:An experimental comparison of two filtering algorithms[C]//Proceedings of the 9th Panhellenic Conference in Informatics-PCI 2003. 2003.
[19] MA H F, JIA M H Z, ZHANG D, et al. Combining tag correlation and user social relation for microblog recommendation[J]. Information Sciences, 2017, 385/386:325-337.
[20] 郭娣, 赵海燕. 融合标签流行度和时间权重的矩阵分解推荐算法[J]. 小型微型计算机系统, 2016, 37(2):293-297.
[21] FALOUTSOS M, FALOUTSOS P, FALOUTSOS C. On power-law relationships of the internet topology[J]. ACM SIGCOMM Computer Communication Review, 1999, 29(4):251-262.
[22] CLEMENTI F, GALLEGATI M. Power law tails in the Italian personal income distribution[J]. Physica A:Statistical Mechanics and its Applications, 2005, 350(2/3/4):427-438.
[23] NEWMAN M E J. Power laws, Pareto distributions and Zipf's law[J]. Contemporary physics, 2005, 46(5):323-351.
[24] CLAUSET A, SHALIZI C R, NEWMAN M E J. Power-law distributions in empirical data[J]. SIAM review, 2009, 51(4):661-703.
[25] LI B H, ZHANG C, CHEN W H, et al. Dynamic reverse furthest neighbor querying algorithm of moving objects[C]//ADMA 2016:Advanced Data Mining and Applications. Cham:Springer, 2016:266-279.
[26] 郑伟, 李博涵, 王雅楠, 等. 融合偏好交互的组推荐算法模型[J]. 小型微型计算机系统, 2018, 2(39):372-378.
[27] CLAUSET A, SHALIZI C R, NEWMAN M E J. Power law distributions in empirical data[J]. SIAM Review, 2009, 51(4):661-703.
[28] 高珂. 基于消费者行为分析的电子商务市场研究[D]. 山东青岛:青岛理工大学, 2010. |