1 |
ADLER M. On a trace functional for formal pseudo-differential operators and the symplectic structure of Korteweg-de Vries type equations. Invent Math, 1979, 50, 219- 248.
|
2 |
WODZICKI M. Local invariants of spectral asymmetry. Invent Math, 1995, 75 (1): 143- 178.
doi: 10.1007/BF01403095
|
3 |
GUILLEMIN V W. A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues. Adv Math, 1985, 55 (2): 131- 160.
doi: 10.1016/0001-8708(85)90018-0
|
4 |
CONNES A. The action functinal in noncommutative geometry. Comm Math Phys, 1998, 117, 673- 683.
doi: 10.1007/BF01218391
|
5 |
KASTLER D. The Dirac operator and gravitation. Comm Math Phys, 1995, 166, 633- 643.
doi: 10.1007/BF02099890
|
6 |
KALAU W, WALZE M. Gravity, noncommutative geometry and the Wodzicki residue. J Geom Phys, 1995, 16, 327- 344.
doi: 10.1016/0393-0440(94)00032-Y
|
7 |
FEDOSOV B V, GOLSE F, LEICHTNAM E, et al. The noncommutative residue for manifolds with boundary. J Funct Anal, 1996, 142, 1- 31.
doi: 10.1006/jfan.1996.0142
|
8 |
WANG Y. Gravity and the noncommutative residue for manifolds with boundary. Lett Math Phys, 2007, 80, 37- 56.
doi: 10.1007/s11005-007-0147-1
|
9 |
WANG Y. Lower-dimensional volumes and Kastler-Kalau-Walze type theorem for manifolds with boundary. Commun Theor Phys, 2010, 54, 38- 42.
doi: 10.1088/0253-6102/54/1/08
|
10 |
WANG Y. Differential forms and the Wodzicki residue for manifolds with boundary. J Geom Phys, 2006, 56, 731- 753.
doi: 10.1016/j.geomphys.2005.04.015
|
11 |
PONGE R. Noncommutative geometry and lower dimensional volumes in Riemannian geometry. Lett Math Phys, 2008, 83, 1- 19.
doi: 10.1007/s11005-007-0201-z
|
12 |
ACKERMANN T, TOLKSDORF J. A generalized Lichnerowicz formula, the Wodzicki residue and gravity. J Geom Phys, 1996, 19, 143- 150.
doi: 10.1016/0393-0440(95)00030-5
|
13 |
PÄFFLE F, STEPHAN C A. On gravity, torsion and the spectral action principle. J Funct Anal, 2012, 262, 1529- 1565.
doi: 10.1016/j.jfa.2011.11.013
|
14 |
PÄFFLE F, STEPHAN C A. Chiral asymmetry and the spectral action. Comm Math Phys, 2013, 321, 283- 310.
doi: 10.1007/s00220-012-1641-6
|
15 |
WANG J, WANG Y, YANG C L. Dirac operators with torsion and the noncommutative residue for manifolds with boundary. J Geom Phys, 2014, 81, 92- 111.
doi: 10.1016/j.geomphys.2014.03.007
|
16 |
BAO K H, SUN, A H, WANG J. A Kastler-Kalau-Walze type theorem for 7-dimensional spin manifolds with boundary about Dirac operators with torsion. J Geom Phys, 2016, 110, 213- 232.
doi: 10.1016/j.geomphys.2016.08.005
|
17 |
WANG J, WANG Y. A general Kastler-Kalau-Walze type theorem for manifolds with boundary. International Journal of Geometric Methods in Modern Physics, 2016, 13 (1): 1650003.
doi: 10.1142/S0219887816500031
|
18 |
BERLINE N, GETZLER E, VERGNE M. Heat Kernels and Dirac Operators [M]. Berlin: Springer-Verlag, 1992.
|
19 |
YU Y L. The Index Theorem and Heat Equation Method [M]. Singapore: World Scientific Publishing, 2001.
|
20 |
ACKERMANN T. A note on the Wodzicki residue. J Geom Phys, 1996, 20, 404- 406.
doi: 10.1016/S0393-0440(95)00061-5
|