1 |
KODAIRA K. On compact analytic surfaces Ⅱ. Ann of Math, 1963, 77, 563- 626.
doi: 10.2307/1970131
|
2 |
NAMIKAWA Y, UENO K. The complete classification of fibres in pencils of curves of genus two. Manuscripta Math, 1973, (9): 143- 186.
|
3 |
ASHIKAGA T, KONNO K. Global and local properties of pencils of algebraic curves [C]// Algebraic Geometry 2000, Azumino, 2000: 1-49.
|
4 |
HORIKAWA E. On deformations of quintic surfaces. Invent Math, 1975, 31, 43- 85.
doi: 10.1007/BF01389865
|
5 |
HORIKAWA E. On algebraic surfaces with pencils of curves of genus two [C]// Complex Analysis and Algebraic Geometry, A Collection of Papers Dedicated to K. Kodaira. Cambridge: Cambridge University Press, 1997: 79-90.
|
6 |
HORIKAWA E. Local deformation of pencils of curves of genus two. Proc Japan Acad (Ser A): Math Sci, 1988, 64, 241- 244.
|
7 |
XIAO G. π1 of elliptic and hyperelliptic surfaces . Internat J Math, 1991, (2): 599- 615.
|
8 |
肖刚. 代数曲面的纤维化 [M]. 上海: 上海科技出版社, 1992.
|
9 |
KONNO K. Geography of Fibred Algebraic Surfaces (in Japanese) [M]. Tokyo: Uchida Rokakuho Publishing, 2013.
|
10 |
BARTH W, HULEK K, PETERS C, et al. Compact Complex Surfaces [M]. 2nd ed. Berlin: Springer-Verlag, 2004.
|
11 |
LIU X L. Modular invariants and singularity indices of hyperelliptic fibrations. Chin Ann Math, 2016, 37, 875- 890.
doi: 10.1007/s11401-016-1045-6
|
12 |
龚成. ${\mathbb{P}}^1$上具有两条或三条奇异纤维的曲面纤维化 [D]. 上海: 华东师范大学, 2012.
|