Journal of East China Normal University(Natural Science) ›› 2023, Vol. 2023 ›› Issue (1): 140-148.doi: 10.3969/j.issn.1000-5641.2023.01.014
• CO2 Utilization • Previous Articles
Huan WANG1,2(), Jiaxing LU1,2,*()
Received:
2022-06-27
Accepted:
2022-09-09
Online:
2023-01-25
Published:
2023-01-07
Contact:
Jiaxing LU
E-mail:hwang@chem.ecnu.edu.cn;jxlu@chem.ecnu.edu.cn
CLC Number:
Huan WANG, Jiaxing LU. Electrocatalytic coupling of CO2 with organic compounds to value-added chemicals[J]. Journal of East China Normal University(Natural Science), 2023, 2023(1): 140-148.
1 | HE M Y, SUN Y H, HAN B X. Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angewandte Chemie-International Edition, 2022, 61 (15): e202112835. |
2 | LIANG H Q, BEWERIES T, FRANCKE R, et al. Molecular catalysts for the reductive homocoupling of CO2 towards C2+ compounds . Angewandte Chemie-International Edition, 2022, 61 (19): e202200723. |
3 | XU S Z, CARTER E A. Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction . Chemical Reviews, 2019, 119, 6631- 6669. |
4 | LEE S, KIM D, LEE J. Electrocatalytic oroduction of C3-C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O-Cucatalyst . Angewandte Chemie-International Edition, 2015, 54 (49): 14701- 14705. |
5 | ANG N W J, OLIVEIRA J C A, ACKERMANN L. Electroreductive cobalt-catalyzed carboxylation: Cross-electrophile electrocoupling with atmospheric CO2. Angewandte Chemie-International Edition, 2020, 59 (31): 12842- 12847. |
6 | LAN Y C, WANG H, WU L X, et al. Electroreduction of dibromobenzenes on silver electrode in the presence of CO2. Journal of Electroanalytical Chemistry, 2012, 664, 33- 38. |
7 | MENA S, SANTIAGO S, GALLARDO I, et al. Sustainable and efficient electrosynthesis of naproxen using carbon dioxide and ionic liquids. Chemosphere, 2020, 245, 125557. |
8 | YANG H P, WU L X, WANG H, et al. Cathode made of compacted silver nanoparticles for electrocatalytic carboxylation of 1-phenethyl bromide with CO2. Chinese Journal of Catalysis, 2016, 37, 994- 998. |
9 | YANG D T, ZHU M H, SCHIFFER Z J, et al. Direct electrochemical carboxylation of benzylic C–N bonds with carbon dioxide. ACS Catalysis, 2019, 9 (5): 4699- 4705. |
10 | SENBOKU H, SAKAI K, FUKUI A, et al. Efficient synthesis of mandel acetates by electrochemical carboxylation of benzal diacetates. ChemElectroChem, 2019, 6 (16): 4158- 4164. |
11 | ZHONG J S, YANG Z X, DING C L, et al. Desulfonylative electrocarboxylation with carbon dioxide. The Journal of Organic Chemistry, 2021, 86, 16162- 16170. |
12 | QUAN Y L, YU R H, ZHU J X, et al. Efficient carboxylation of styrene and carbon dioxide by single-atomic copper electrocatalyst. Journal of Colloid and Interface Science, 2021, 601, 378- 384. |
13 | ALKAYAL A, TABAS V, MONTANARO S, et al. Harnessing applied potential: Delective β-hydrocarboxylation of substituted olefins. Journal of the American Chemical Society, 2020, 142, 1780- 1785. |
14 | KIM Y, PARK G D, BALAMURUGAN M, et al. Electrochemical β-selective hydrocarboxylation of styrene using CO2 and water . Advanced Science, 2020, 7 (3): 1900137. |
15 | GHOBADI K, ZARE H R, KHOSHRO H, et al. Electrosynthesis of cinnamic acid by electrocatalytic carboxylation of phenylacetylene in the presence of [NiⅡ(Me4-NO2Bzo[15]tetraeneN4)] complex: An EC′ CCC′ C mechanism. Comptes Rendus Chimie, 2018, 21, 14- 18. |
16 | LI C H, YUAN G Q, JIANG H F. Electrocarboxylation of alkynes with carbon dioxide in the presence of metal salt catalysts. Chinese Journal of Chemistry, 2010, 28, 1685- 1689. |
17 | STALCUP M A, NILLES C K, LEE H J, et al. Organic electrosynthesis in CO2-eXpanded electrolytes: Enabling selective acetophenone carboxylation to atrolatic acid . ACS Sustainable Chemistry & Engineering, 2021, 9 (31): 10431- 10436. |
18 | SENBOKU H, YAMAUCHI Y, FUKUHARA T, et al. Electrochemical carboxylation of aliphatic ketones: Synthesis of beta-keto carboxylic acids. Electrochemistry, 2006, 74, 612- 614. |
19 | WANG H, ZHU H W, GUO R R, et al. Computational and experimental study on electrocarboxylation of benzalacetone. Asian Journal of Organic Chemistry, 2017, 6 (10): 1380- 1384. |
20 | QU Y, TSUNEISHI C, TATENO H, et al. Green synthesis of α-amino acids by electrochemical carboxylation of imines in a flow microreactor. Reaction Chemistry & Engineering, 2017, 2 (6): 871- 875. |
21 | WU L X, YANG H P, GUAN Y B, et al. Electrosynthesis of cyclic carbonates from CO2 and epoxides on compacted silver nanoparticles electrode . International Journal of Electrochemical Science, 2017, 12 (10): 8963- 8972. |
22 | WANG H, WU L X, ZHAO J Q, et al. Synthesis of cyclic carbonates from CO2 and diols via electrogenerated cyanomethyl anion . Greenhous Gases-Science and Technology, 2012, 2 (1): 59- 65. |
23 | LEE K M, JANG J H, BALAMURUGAN M, et al. Redox-neutral electrochemical conversion of CO2 to dimethyl carbonate . Nature Energy, 2021, 6, 733- 741. |
24 | FORTE G, CHIAROTTO I, RICHTER F, et al. Towards a sustainable electrochemical activation for recycling CO2: Synthesis of bis-O-alkylcarbamates from aliphatic and benzyl diamines . Reaction Chemistry & Engineering, 2017, 2 (5): 646- 649. |
25 | TASCEDDA P, DUNACH E. Electrosynthesis of cyclic carbamates from aziridines and carbon dioxide [J]. Chemical Communications, 2000(6): 449-450. |
26 | ORSINI M, FEROCI M, SOTGIU G, et al. Stereoselective electrochemical carboxylation: 2-phenylsuccinates from chiral cinnamic acid derivatives. Organic & Biomolecular Chemistry, 2005, 3 (7): 1202- 1208. |
27 | FEROCI M, INESI A, ORSINI M, et al. Electrochemical carboxylation of N-(2-bromopropionyl)-4R-phenyloxazolidin-2-one: An efficient route to unsymmetrical methylmalonic ester derivatives. Organic Letters, 2002, 4 (16): 2617- 2620. |
28 | CHEN B L, TU Z Y, ZHU H W, et al. CO2 as a C1-organic building block: Enantioselective electrocarboxylation of aromatic ketones with CO2 catalyzed by cinchona alkaloids under mild conditions . Electrochimica Acta, 2014, 116, 475- 483. |
29 | CHEN B L, ZHU H W, XIAO Y, et al. Asymmetric electrocarboxylation of 1-phenylethyl chloride catalyzed by electrogenerated chiral [COI(salen)]- complex. Electrochemistry Communications, 2014, 42, 55- 59. |
30 | JIAO K J, LI Z M, XU X T, et al. Palladium-catalyzed reductive electrocarboxylation of allyl esters with carbon dioxide. Organic Chemistry Frontiers, 2018, 5 (14): 2244- 2248. |
31 | YANG H P, YUE Y N, SUN Q L, et al. Entrapment of a chiral cobalt complex within silver: A novel heterogeneous catalyst for asymmetric carboxylation of benzyl bromides with CO2. Chemical Communications, 2015, 51, 12216- 12219. |
32 | YANG H P, CHI D H, SUN Q L, et al. Entrapment of alkaloids within silver: From enantioselective hydrogenation to chiral recognition. Chemical Communications, 2014, 50, 8868- 8870. |
33 | YANG H P, FEN Q, WANG H, et al. Copper encapsulated alkaloids composite: An effective heterogeneous catalyst for electrocatalytic asymmetric hydrogenation. Electrochemistry Communications, 2016, 71, 38- 42. |
34 | YANG L R, ZHANG J J, ZHAO Y J, et al. La1−xSrxFeO3perovskite electrocatalysts for asymmetric electrocarboxylation of acetophenone with CO2. Electrochimica Acta, 2021, 398, 139308. |
35 | YANG L R, ZHAO Y J, JIANG C J, et al. Perovskite La0.7Sr0.3Fe0.8B0.2O3 (B = Ti, Mn, Co, Ni, and Cu) as heterogeneous electrocatalysts for asymmetric electrocarboxylation of aromatic ketones . Jouranl Catalysis, 2021, 401, 224- 233. |
36 | ZHAO Y J, YANG L R, WANG L T, et al. Asymmetric electrocarboxylation of 4′ -methylacetophenone over PrCoO3 perovskites . Catalysis Science & Technology, 2022, 12 (9): 2887- 2893. |
37 | LIAO L L, WANG Z H, CAO K G, et al. Electrochemical ring-opening dicarboxylation of strained carbon–carbon single bonds with CO2: Facile synthesis of diacids and derivatization into polyesters . Journal of the American Chemical Society, 2022, 144, 2062- 2068. |
38 | SUN X F, ZHU Q G, HU J Y, et al. N,N-Dimethylation of nitrobenzenes with CO2 and water by electrocatalysis . Chemical Science, 2017, 8 (8): 5669- 5674. |
39 | ROONEY C L, WU Y S, TAO Z X, et al. Electrochemical eeductive N-methylation with CO2 enabled by a molecular catalyst . Journal of the American Chemical Society, 2021, 143, 19983- 19991. |
40 | SENBOKU H, NAGAKURA K, FUKUHARA T, et al. Three-component coupling reaction of benzylic halides, carbon dioxide, and N, N-dimethylformamide by using paired electrolysis: Sacrificial anode-free efficient electrochemical carboxylation of benzylic halides. Tetrahedron, 2015, 71, 3850- 3856. |
41 | GRINBERG V A, KOCH T A, MAZIN V M, et al. Electrocarboxylation of 1,4-dibromobut-2-ene in a CO2-DMF liquid mixture . Russian Chemical Bulletin, 1997, 46, 1560- 1564. |
42 | CORBIN N, YANG D T, LAZOUSKI N, et al. Suppressing carboxylate nucleophilicity with inorganic salts enables selective electrocarboxylation without sacrificial anodes. Chemical Science, 2021, (12): 12365- 12376. |
43 | MEDVEDEV J J, MEDVEDEVA X V, LI F, et al. Electrochemical CO2 fixation to α-methylbenzyl bromide in divided cells with nonsacrificial anodes and aqueous anolytes . ACS Sustainable Chemistry & Engineering, 2019, 7 (24): 19631- 19639. |
44 | SHETA A M, MASHALY M A, SAID S B, et al. Selective α,δ-hydrocarboxylation of conjugated dienes utilizing CO2 and electrosynthesis . Chemical Science, 2020, 11 (34): 9109- 9114. |
45 | MATTHESSEN R, FRANSAER J, BINNEMANS K, et al. Paired electrosynthesis of diacid and diol precursors using dienes and CO2 as the carbon source . ChemElectroChem, 2015, 2 (1): 73- 76. |
46 | MUCHEZ L, DE VOS D E, KIM M J. Sacrificial anode-free electrosynthesis of α-hydroxy acids via electrocatalytic coupling of carbon dioxide to aromatic alcohols. ACS Sustainable Chemistry & Engineering, 2019, 7 (19): 15860- 15864. |
[1] | Meng’en CHU, Chunjun CHEN, Haihong WU, Mingyuan HE, Buxing HAN. Electrodeposition performance of a copper-based catalyst for the electroreduction of CO2 [J]. Journal of East China Normal University(Natural Science), 2023, 2023(1): 129-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||