1 |
AGEMI R. Blow-up of solutions to nonlinear wave equations in two space dimensions. Manuscripta Mathematica, 1991, 73, 153- 162.
|
2 |
HIDANO K, TSUTAYA K. Global existence and asymptotic behavior of solutions for nonlinear wave equations. Indiana University Mathematics Journal, 1995, 44, 1273- 1305.
|
3 |
HIDANO K, WANG C B, YOKOYAMA K. The Glassey conjecture with radially symmetric data. Journal de Mathématiques Pures et Appliquées, 2012, 98 (9): 518- 541.
|
4 |
ZHOU Y. Blow up of solutions to the Cauchy problem for nonlinear wave equations. Chinese Annals of Mathematics Series B, 2001, 22, 275- 280.
|
5 |
DENG K. Blow-up of solutions of some nonlinear hyperbolic systems. Rocky Mountain Journal of Mathematics, 1999, 29 (3): 807- 820.
|
6 |
KUBO H, KUBOTA K, SUNAGAWA H. Large time behavior of solutions to semilinear systems of wave equations. Mathematische Annalen, 2006, 335 (2): 435- 478.
|
7 |
IKEDA M, SOBAJIMA M, WAKASA K. Blow-up phenomena of semilinear wave equations and their weakly coupled systems. Journal of Differential Equations, 2019, 267 (9): 5165- 5201.
|
8 |
OUYANG B P, LIN Y W. Nonexistence of global solutions for a semilinear double-wave equation with nonlinearity of derivative. Chinese Quarterly Journal of Mathematics, 2021, 36 (2): 149- 159.
|
9 |
YORDANOV B T, ZHANG Q S. Finite time blow up for critical wave equations in high dimensions. Journal of Functional Analysis, 2006, 231 (2): 361- 374.
|
10 |
LAI N A, TAKAMURA H. Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey’s conjecture. Differential and Integral Equations, 2019, 32 (1/2): 37- 48.
|