1 |
BANDI N, SUN C, AGRAWAL D, et al. Hardware acceleration in commercial databases: A case study of spatial operations [C]// Proceedings of the Very Large Databases Endowment. 2004: 1021-1032.
|
2 |
YUAN Y, LEE R, ZHANG X.. The Yin and Yang of processing data warehousing queries on GPU devices. Proceedings of the Very Large Databases Endowment, 2013, 6 (10): 817- 828.
|
3 |
HE B S, LU M, YANG K, et al.. Relational query coprocessing on graphics processors. ACM Transactions on Database Systems, 2009, 34 (4): 21.
|
4 |
HEIMEL M, SAECKER M, PIRK H, et al.. Hardware-oblivious parallelism for in memory column-stores. Proceedings of the Very Large Databases Endowment, 2013, 6 (9): 709- 720.
|
5 |
LI G L, ZHOU X H, SUN J, et al.. openGauss: An autonomous database system. Proceedings of the Very Large Databases Endowment, 2021, 14 (12): 3028- 3041.
|
6 |
LEE R B, ZHOU M H, LI C, et al.. The art of balance: A RateupDB™ experience of building a CPU/GPU hybrid database product. Proceedings of the Very Large Databases Endowment, 2021, 14 (12): 2999- 3013.
|
7 |
SIOULAS P, CHRYSOGELOS P, KARPATHIOTAKIS M, et al. Hardware-conscious hash-joins on GPUs [C]// Proceedings of the 35th IEEE International Conference on Data Engineering. 2019: 698-709.
|
8 |
LUTZ C, BRESS S, ZEUCH S, et al. Pump up the volume: Processing large data on GPUs with fast interconnects [C]// Proceedings of the 2020 International Conference on Management of Data. 2020: 1633-1649.
|
9 |
LUTZ C, BRESS S, ZEUCH S, et al. Triton join: Efficiently scaling to a large join state on GPUs with fast interconnects [C]// Proceedings of the 2022 International Conference on Management of Data. 2022: 1017-1032.
|
10 |
MANCINI R, KARTHIK S, CHANDRA B, et al. Efficient massively parallel join optimization for large queries [C]// Proceedings of the 2022 International Conference on Management of Data. 2022: 122-135.
|
11 |
BREẞ S, FUNKE H, TEUBNER J. Robust query processing in co-processor-accelerated databases [C]// Proceedings of the 2016 International Conference on Management of Data. 2016: 1891-1906.
|
12 |
ROOT C, MOSTAK T. MapD: A GPU-powered big data analytics and visualization platform [C]// Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques Conference 2016 Talks. 2016: 73.
|
13 |
MERAJI S, SCHIEFER B, PHAM L, et al. Towards a hybrid design for fast query processing in DB2 with BLU acceleration using graphical processing units: A technology demonstration [C]// Proceedings of the 2016 International Conference on Management of Data. 2016: 1951-1960.
|
14 |
裴威, 李战怀, 潘巍. GPU 数据库核心技术综述 [J]. 软件学报, 2021, 32(3): 859-885.
|
15 |
SUN X, YU J, ZHOU Z, et al. FPGA-based compaction engine for accelerating LSM-tree key-value stores [C]// Proceedings of the 2020 IEEE 36th International Conference on Data Engineering. 2020: 1261-1272.
|
16 |
CHIOSA M, MASCHI F, MÜLLER I, et al. Hardware acceleration of compression and encryption in SAP HANA [C]// Proceedings of the 48th International Conference on Very Large Databases. 2022: 3277-3291.
|
17 |
GRAEFE G.. Volcano—An extensible and parallel query evaluation system. IEEE Transactions on Knowledge and Data Engineering, 1994, 6 (1): 120- 135.
|