[1]REINHARD D. Graph Theorey (Second Edition) [M]. Hong Kong:Springer-Verlag, 2000: 95-117.[2]GY\'{A]RF\'{A]S A. Problems from the world surrounding perfect graphs [J]. Zastow Mat, 1987, 19: 413-441.[3]WAGON S. A bound on the chromatic number of graphs without certain induced subgraphs [J]. J of Combin Theory, Series B, 1980, 29(3):345-346.[4]GY\'{A]RF\'{A]S A, SZEMER\'{E]DI E and Tuza. Induced subtrees ingraphs of large chromatic number [J]. Discrete Math, 1980, 30(3):235-244.[5] DUAN F and WU B Y. On chromatic number of graphs without certain induced subgraph [J]. Ars combinatoria, 2011, 101: 33-34.[6] DUAN F and ZHANG W J. On chromatic number of $\{2K_1+K_2, C_4\]$-free graphs [J]. Journal of East China Normal University: Natural Science, 2014(1): 9-12.[7] RANDERATH B, SCHIERMEYER I. A note on Brooks' theorem for triangle-free graphs [J]. Australas J Comb, 2002, 26: 3-9.[8] RANDERATH B, SCHIERMEYER I. Vertex coloring and forbidden subgraphs-a survey [J]. Graphs Combin, 2004, 20(1): 1-40.[9] RANDERATH B. The Vizing bound for the chromatic number based on forbidden pairs [D]. Nordrhein-Westfalen: RWTH Aachen University, 1998.[10] FAN G, XU B, YE T, et al. Forbidden subgraphs and 3-colorings [J]. Siam J Disc Math, 2014, 28: 1226-1256. |