[1] CHEN L, CONG G, JENSEN C S, et al. Spatial keyword query processing:An experimental evaluation[C]//International Conference on Very Large Data Bases. Trondheim, Norway:VLDB Endowment, 2013, 6(3):217-228.
[2] BOUROS P, GE S, MAMOULIS N. Spatio-textual similarity joins[J]. Proceedings of the VLDB Endowment, 2012, 6(1):1-12.
[3] ZAHARIA M, CHOWDHURY M, DAS T, et al. Resilient distributed datasets:A fault-tolerant abstraction for in-memory cluster computing[C]//USENIX Association Usenix Conference on Networked Systems Design and Implementation. New York:ACM, 2012,70(2):2.
[4] XIE D, LI F, YAO B, et al. Simba:Effcient in-memory spatial analytics[C]//International Conference on Management of Data. New York:ACM, 2016:1071-1085.
[5] ELDAWY A, MOKBEL M F. Spatial Hadoop:A MapReduce framework for spatial data[C]//International Conference on Data Engineering. New York:IEEE, 2016:1352-1363.
[6] XIE D, LI F, YAO B, et al. Simba:Spatial in-memory big data analysis[C]//ACM Sigspatial International Conference on Advances in Geographic Information Systems. New York:ACM, 2016:86-89.
[7] YAO B, ZHANG W, WANG Z J, et al. Distributed in-memory analytics for big temporal data[C]//International Conference on Database Systems for Advanced Applications. Berlin:Springer, 2018:549-565.
[8] AJI A, WANG F, VO H, et al. Hadoop-GIS:A high performance spatial data warehousing system over MapReduce[J]. Proceedings of the VLDB Endowment, 2013, 6(11):1009-1020.
[9] YAO B, LI F, HADJIELEFTHERIOU M, et al. Approximate string search in spatial databases[C]//International Conference on Data Engineering. New York:IEEE, 2010:545-556.
[10] YAO B, TANG M, LI F. Multi-approximate-keyword routing in GIS data[C]//ACM Sigspatial International Conference on Advances in Geographic Information Systems. New York:ACM, 2011:201-210.
[11] LI F, YAO B, TANG M, et al. Spatial approximate string search[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(6):1394-1409.
[12] ZHOU Y, XIE X, WANG C, et al. Hybrid index structures for location-based web search[C]//International Conference on Information and Knowledge Management. New York:ACM, 2005:155-162.
[13] BECKMANN N, KRIEGEL H P, SCHNEIDER R, et al. The R*-tree:An effcient and robust access method for points and rectangles[J]. ACM Sigmod Record, 1990, 19(2):322-331.
[14] GUTTMAN A. R-trees:A dynamic index structure for spatial searching[C]//International Conference on Management of Data. New York:ACM, 1984:47-57.
[15] WU D, JENSEN C S. A density-based approach to the retrieval of top-k spatial textual clusters[C]//International Conference on Information and Knowledge Management. New York:ACM, 2016:2095-2100.
[16] CHOUDHURY F M, CULPEPPER J S, SELLIS T. Batch processing of top-k spatial-textual queries[C]//International ACM Workshop on Managing and Mining Enriched Geo-Spatial Data. New York:ACM, 2015:7-12.
[17] LUO C, LI J, LI G, et al. Effcient reverse spatial and textual k nearest neighbor queries on road networks[J].Knowledge-Based Systems, 2016, 93:121-134.
[18] CHEN Z, CONG G, ZHANG Z, et al. Distributed publish/subscribe query processing on the spatio-textual data stream[C]//International Conference on Data Engineering. New York:IEEE, 2017:1095-1106.
[19] YAO B, LI F, KUMAR P. K nearest neighbor queries and knn-joins in large relational databases (almost) for free[C]//International Conference on Data Engineering. New York:IEEE, 2010:4-15.
[20] 徐石磊,王雷,胡卉芪. 基于分布式系统OceanBase的并行连接[J]. 华东师范大学学报(自然科学版), 2017(5):1-10.
[21] SARAWAGI S, KIRPAL A. Effcient set joins on similarity predicates[C]//International Conference on Management of Data. New York:ACM, 2004:743-754.
[22] CHAUDHURI S, GANTI V, KAUSHIK R. A primitive operator for similarity joins in data cleaning[C]//International Conference on Data Engineering. New York:IEEE, 2006:5.
[23] BAYARDO R J, MA Y, SRIKANT R. Scaling up all pairs similarity search[C]//International Conference on World Wide Web. New York:ACM, 2007:131-140.
[24] FAN L, CAO P, ALMEIDA J, et al. Summary cache:A scalable wide-area web cache sharing protocol[J].IEEE/ACM Transactions on Networking, 2000, 8(3):281-293.
[25] XU Y, YAO B, WANG Z J, et al. Skia:Scalable and effcient in-memory analytics for big spatialtextualdata[EB/OL]. (2018-05-15)[2018-06-18]. https://www.researchgate.net/publication/326352693.
[26] LEUTENEGGER S T, LOPEZ M A, EDGINGTON J. STR:a simple and effcient algorithm for R-tree packing[C]//International Conference on Data Engineering. New York:IEEE, 1997:497-506.
[27] OpenStreetMap Foundation. Openstreetmap project[EB/OL]. (2016-02-12)[2018-06-18]. http://www.openstreetmap.org.
[28] LESKOVEC J, KREYL A. SNAP Datasets:Stanford large network dataset collection[EB/OL]. (2014-06-01)[2018-06-18]. http://snap.stanford.edu/data.
[29] SAHAMI M, HEILMAN T D. A web-based kernel function for measuring the similarity of short text snippets[C]//International Conference on World Wide Web. New York:ACM, 2006:377-386.
[30] YAO B, CHEN Z, GAO X, et al. Flexible aggregate nearest neighbor queries in road networks[C]//International Conference on Data Engineering. New York:IEEE, 2018:1-12.
[31] MA J, YAO B, GAO X, et al. Top-k Critical Vertices Query on Shortest Path[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 99(1):1-13.
[32] XIE D, LI G, YAO B, et al. Practical private shortest path computation based on oblivious storage[C]//International Conference on Data Engineering. New York:IEEE, 2016:361-372.
[33] YAO B, XIAO X, LI F, et al. Dynamic monitoring of optimal locations in road network databases[J]. The International Journal on Very Large Data Bases, 2014, 23(5):697-720.
[34] XIAO X, YAO B, LI F. Optimal location queries in road network databases[C]//International Conference on Data Engineering. New York:IEEE, 2011:804-815. |