SHEN Jia-yin, XUE Xun. Non-orthogonal corrections to wave functions in perturbation theory[J]. Journal of East China Normal University(Natural Sc, 2019, 2019(2): 97-105,115.
[1] SCHRÖDINGER E. Quantisierung als eigenwertproblem[J]. Annalen der Physik, 1926, 385(13):437-490.
[2] KATO T. Perturbation Theory for Linear Operators[M]. Berlin:Springer Science & Business Media, 2013.
[3] LIONS J L. Exact Controllability, stabilization and perturbations for distributed systems[J]. SIAM Review, 1988, 30(1):1-68.
[4] 曾谨言. 量子力学教程[M]. 北京:科学出版社, 2014.
[5] 曾谨言. 量子力学(卷I)[M]. 北京:科学出版社, 2013.
[6] 钱伯初. 量子力学[M]. 北京:高等教育出版社, 2006.
[7] SAKURAI J J, COMMINS E D. Modern Quantum Mechanics[M]. New York:Addison-Wesley Publishing Company, Inc, 1985.
[8] COHEN-TANNOUDJI C, DIU B, LALOE F. Quantum Mechanics(vol.2)[M]. Hoboken:John Wiley & Sons Inc, 1991.
[9] 梁灿彬, 周彬. 微分几何入门与广义相对论(下册)[M]. 北京:科学出版社, 2006.
[10] GRIFFITHS D J. Introduction to Quantum Mechanics[M]. Cambridge:Cambridge University Press, 2016.224-225.
[11] 汤川秀树. 量子力学I[M]. 北京:科学出版社, 1991.
[12] OSHEROV V I, USHAKOV V G. Stark problem in terms of the Stokes multipliers for the triconfluent Heun equation[J]. Physical Review A, 2013, 88(5):053414.
[13] OSHEROV V I, USHAKOV V G. Analytical solutions of the Schrödinger equation for a hydrogen atom in a uniform electric field[J]. Physical Review A, 2017, 95(2):023419.
[14] WEINBERG S. The Quantum Theory of Fields (vol.1)[M]. Cambridge:Cambridge University Press, 1995.