[1] GRATZEL M. Photoelectrochemical cells[J]. Nature, 1983, 414(6861):338-344. [2] ANTONIADOU M, KONDARIDES D I, LABOU D, et al. An efficient photoelectrochemical cell functioning in the presence of organic wastes[J]. Solar Energy Materials & Solar Cells, 2010, 94(3):592-597. [3] ANTONIADOU M, KONDARIDES D I, DIONYSIOU D D, et al. Quantum dot sensitized titania applicable as photoanode in photoactivated fuel cells[J]. Journal of Physical Chemistry C, 2012, 116(32):16901-16909. DOI:10.1021/jp305098m. [4] LIU Y, LI J, ZHOU B, et al. Photoelectrocatalytic degradation of refractory organic compounds enhanced by a photocatalytic fuel cell[J]. Applied Catalysis B Environmental, 2012, 111(6):485-491. [5] LIU Y, LI J, ZHOU B, et al. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell[J]. Water Research, 2011, 45(13):3991-3998. DOI:10.1016/j.watres.2011.05.004. [6] XIA L, JING B, LI J, et al. A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell[J]. Applied Catalysis B Environmental, 2016, 183:224-230. DOI:10.1016/j.apcatb.2015.10.050. [7] LIAO Q, LI L, CHEN R, et al. Respective electrode potential characteristics of photocatalytic fuel cell with visible-light responsive photoanode and air-breathing cathode[J]. International Journal of Hydrogen Energy, 2015, 40(46):16547-16555. [8] JENNY S, MASAYA M, MASATO T, et al. Understanding TiO2 photocatalysis:mechanisms and materials[J]. Chemical Reviews, 2014, 114(19):9919-9986. DOI:10.1021/cr5001892. [9] TANG X H, LI D Y. Evaluation of asphaltene degradation on highly ordered TiO2 nanotubular arrays via variations in wettability[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2011, 27(3):1218-1223. [10] CARNEIRO J T, SAVENIJE T J, MOULIJN J A, et al. Toward a physically sound structure-activity relationship of TiO2-based photocatalysts[J]. Journal of Physical Chemistry C, 2010, 114(1):327-332. DOI:10.1021/jp906395w. [11] KUANG D, BRILLET J, CHEN P, et al. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells[J]. ACS Nano, 2008, 2(6):1113-1116. DOI:10.1021/nn800174y. [12] ALBU S P, GHICOV A, MACAK J M, et al. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications[J]. Nano Letters, 2007, 7(5):1286-1289. DOI:10.1021/nl070264k. [13] HISATOMI T, KUBOTA J, DOMEN K. Cheminform abstract:Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting[J]. Cheminform, 2014, 43(22):7520-7535. [14] LI B, CAO H, GUI Y, et al. Cu2O@reduced graphene oxide composite for removal of contaminants from water and supercapacitors[J]. Journal of Materials Chemistry, 2011, 21(29):10645-10648. DOI:10.1039/c1jm12135a. [15] MCSHANE C M, CHOI K S. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth[J]. Journal of the American Chemical Society, 2013, 131(7):2561-2569. [16] DOMINI C E, HIDALGO M, MARKEN F,et al. Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand:Closed microwaves, open microwaves and ultrasound irradiation[J]. Analytica Chimica Acta, 2006, 569(1):275-276. [17] ZHAO H, JIANG D, ZHANG S, et al. Development of a direct photoelectrochemical method for determination of chemical oxygen demand[J]. Analytical Chemistry, 2004, 76(1):155-160. [18] LIU Z, ZHANG X, NISHIMOTO S, et al. Highly Ordered TiO2 Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol[J]. The Journal of Physical Chemistry C, 2008, 112(1):253-259. DOI:10.1021/jp0772732. [19] HOU X, WANG C W, ZHU W D,et al. Preparation of nitrogen-doped anatase TiO2 nanoworm/nanotube hierarchical structures and its photocatalytic effect[J]. Solid State Sciences, 2014, 29(3):27-33. [20] ZHOU Z Y, WU Z Y, XU Q J, et al. A solar-charged photoelectrochemical wastewater fuel cell for efficient and sustainable hydrogen production[J]. Journal of Materials Chemistry A, 2017, 5:25450-25459. [21] LIU L, CHEN X. Titanium Dioxide Nanomaterials:Self-Structural Modifications[J]. Chemical Reviews, 2014, 114(19):9890-9918. DOI:10.1021/cr400624r. [22] KUMAR S G, RAO K S R K. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO)[J]. Applied Surface Science, 2017, 391:124-148. DOI:10.1016/j.apsusc.2016.07.081. [23] FUJISHIMA A, ZHANG X, TRYK D A. TiO photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63(12):515-582. DOI:10.1016/j.surfrep.2008.10.001. [24] YING D W, CAO R Q, LI C J, et al. Study of the photocurrent in a photocatalytic fuel cell for wastewater treatment and the effects of TiO2 surface morphology to the apportionment of the photocurrent[J]. Electrochimica Acta, 2016, 192:319-327. DOI:10.1016/j.electacta.2016.01.210. [25] LIAO Q, LI L, CHEN R, et al. Respective electrode potential characteristics of photocatalytic fuel cell with visible-light responsive photoanode and air-breathing cathode[J]. International Journal of Hydrogen Energy, 2015, 40(46):16547-16555. DOI:10.1016/j.ijhydene.2015.10.002. [26] PROIETTI E, JAOUEN F, LEFÈVRE M, et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nature Communications, 2011, 2:Article number 416. DOI:10.1038/ncomms1427. |