Journal of East China Normal University(Natural Science) ›› 2022, Vol. 2022 ›› Issue (3): 101-108.doi: 10.3969/j.issn.1000-5641.2022.03.011
• Estuary and Coastal Research • Previous Articles Next Articles
Zhiyong YOU, Bolin LIU, Cheng LIU, Dengzhou GAO*()
Received:
2021-01-11
Accepted:
2021-01-11
Online:
2022-05-19
Published:
2022-05-19
Contact:
Dengzhou GAO
E-mail:dzgao@sklec.ecnu.edu.cn
CLC Number:
Zhiyong YOU, Bolin LIU, Cheng LIU, Dengzhou GAO. Temperature sensitivity and controlling factors of nitrogen fixation processes in sediments of the Yangtze River Estuary[J]. Journal of East China Normal University(Natural Science), 2022, 2022(3): 101-108.
Table 1
Sediment physicochemical properties and potential nitrogen fixation rates"
采样点 | 纬度 (N) /(°) | 经度 (E) /(°) | 温度 /℃ | pH值 | 盐度 (psu) | 硫化物 / (μmol·g–1) |
LHK | 31.52 | 121.30 | 30.8 | 7.62 | 0.27 | 1.22 |
WSK | 31.39 | 121.51 | 30.5 | 7.64 | 0.17 | 1.93 |
BLG | 31.23 | 121.77 | 28.7 | 7.92 | 0.17 | 0.08 |
CMDT | 31.50 | 121.96 | 30.3 | 8.40 | 0.15 | 0.14 |
A1 | 31.27 | 122.61 | 21.7 | 8.35 | 14.29 | 3.31 |
A2 | 30.83 | 122.65 | 20.5 | 8.28 | 31.68 | 6.48 |
采样点 | Fe2+ / (mg·g–1) | Fe3+ / (mg·g–1) | NH4+ / (μg·g–1) | NO3– / (μg·g–1) | TOC / (mg·g–1) | 潜在固氮速率 / (nmol·g–1·h–1) |
LHK | 3.10 | 1.23 | 93.90 | 14.83 | 7.60 | 2.14 |
WSK | 2.78 | 1.01 | 188.96 | 19.63 | 10.89 | 0.83 |
BLG | 1.87 | 1.19 | 31.45 | 13.28 | 7.48 | 0.72 |
CMDT | 1.51 | 1.35 | 8.01 | 24.81 | 6.70 | 1.11 |
A1 | 1.69 | 1.25 | 3.35 | 1.73 | 8.26 | 1.55 |
A2 | 2.46 | 0.88 | 6.30 | 3.43 | 11.59 | 2.85 |
Table 2
Pearson’s correlations between nitrogen fixation rates and physicochemical characteristics of the sediments"
温度 /℃ | pH值 | 盐度 (psu) | 硫化物 / (μmol·g–1) | Fe2+ / (mg·g–1) | Fe3+ / (mg·g–1) | NH4+ / (μg·g–1) | NO3– / (μg·g–1) | TOC / (mg·g–1) |
5 | –0.152 | 0.730 | 0.849* | 0.670 | –0.770 | 0.103 | –0.606 | 0.750 |
10 | –0.138 | 0.722 | 0.838* | 0.529 | –0.732 | 0.080 | –0.813* | 0.731 |
15 | –0.184 | –0.124 | –0.053 | 0.456 | 0.300 | 0.089 | 0.188 | –0.257 |
20 | –0.279 | 0.380 | 0.436 | 0.697 | –0.308 | –0.010 | –0.351 | 0.215 |
25 | –0.569 | –0.364 | –0.190 | 0.660 | 0.242 | 0.489 | 0.207 | –0.173 |
30 | –0.620 | –0.643 | –0.572 | 0.521 | 0.386 | 0.399 | 0.602 | –0.451 |
1 |
ANDERSSON B, SUNDBACK K, HELLMAN M, et al. Nitrogen fixation in shallow-water sediments: Spatial distribution and controlling factors. Limnology and Oceanography, 2014, 59 (6): 1932- 1944.
doi: 10.4319/lo.2014.59.6.1932 |
2 |
SHIAU Y J, LIN M F, TAN C C, et al. Assessing N2 fixation in estuarine mangrove soils . Estuarine Coastal and Shelf Science, 2017, 189, 84- 89.
doi: 10.1016/j.ecss.2017.03.005 |
3 |
COLE L W, MCGLATHERY K J. Nitrogen fixation in restored eelgrass meadows. Marine Ecology Progress Series, 2012, 448, 235- 246.
doi: 10.3354/meps09512 |
4 |
BRAUER V S, STOMP M, ROSSO C, et al. Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece. Isme Journal, 2013, 7 (11): 2105- 2115.
doi: 10.1038/ismej.2013.103 |
5 |
GARCIAS-BONET N, VAQUER-SUNYER R, DUARTE C M, et al. Warming effect on nitrogen fixation in Mediterranean macrophyte sediments. Biogeosciences, 2019, 16 (1): 167- 175.
doi: 10.5194/bg-16-167-2019 |
6 |
JIANG H B, FUG F X, RIVERRO-CALLE S, et al. Ocean warming alleviates iron limitation of marine nitrogen fixation. Nature Climate Change, 2018, 8 (8): 709- 712.
doi: 10.1038/s41558-018-0216-8 |
7 |
LEE R Y, TOYE S B. Seasonal patterns of nitrogen fixation and denitrification in oceanic mangrove habitats. Marine Ecology Progress Series, 2006, 307, 127- 141.
doi: 10.3354/meps307127 |
8 |
BERTICS V J, LOSCHER C R, SALONEN I, et al. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernforde Bay, Baltic Sea. Biogeosciences, 2013, 10 (3): 1243- 1258.
doi: 10.5194/bg-10-1243-2013 |
9 |
GARCIAS-BONET N, FUSI M, ALI M, et al. High denitrification and anaerobic ammonium oxidation contributes to net nitrogen loss in a seagrass ecosystem in the central Red Sea. Biogeosciences, 2018, 15 (23): 7333- 7346.
doi: 10.5194/bg-15-7333-2018 |
10 |
HOU L J, ZHENG Y L, LIU M, et al. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary. Journal of Geophysical Research:Biogeosciences, 2013, 118 (3): 1237- 1246.
doi: 10.1002/jgrg.20108 |
11 |
胡晓婷, 程吕, 林贤彪, 等. 沉积物硝酸盐异化还原过程的温度敏感性与影响因素——以长江口青草沙水库为例. 中国环境科学, 2016, 36 (9): 2624- 2632.
doi: 10.3969/j.issn.1000-6923.2016.09.011 |
12 | 徐皓. 长江口营养盐的收支平衡及迁移模式 [D]. 上海: 华东师范大学, 2013. |
13 | 李涛. 崇明潮滩厌氧氨氧化过程及影响机理初步探究 [D]. 上海: 华东师范大学, 2013. |
14 | CHEN Z Y, LI J F, SHEN H T, et al. Yangtze River of China: Historical analysis of discharge variability and sediment flux. Geomorphology, 2001, 41 (2/3): 77- 91. |
15 | HOU L J, LIU M, XU S Y, et al. The diffusive fluxes of inorganic nitrogen across the intertidal sediment-water interface of the Changjiang Estuary in China. Acta Oceanologica Sinica, 2006, 25 (3): 48- 57. |
16 | 张红丽, 尹国宇, 郑艳玲, 等. 沉积物再悬浮对长江口潮滩上覆水体脱氮过程的影响. 华东师范大学学报(自然科学版), 2020, (3): 78- 87. |
17 |
WANG R, LI X F, HOU L J, et al. Nitrogen fixation in surface sediments of the East China Sea: Occurrence and environmental implications. Mar Pollut Bull, 2018, 137, 542- 548.
doi: 10.1016/j.marpolbul.2018.10.063 |
18 | HOU L J, YIN G Y, LIU M, et al. Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments . Environmental Science & Technology, 2015, 49 (1): 326- 333. |
19 | HOU L J, ZHENG Y L, LIU M, et al. Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands. Scientific Reports, 2015, (5): 15621. |
20 |
LIU C, HOU L J, LIU M, et al. In situ nitrogen removal processes in intertidal wetlands of the Yangtze Estuary. Journal of Environmental Sciences, 2020, 93, 91- 97.
doi: 10.1016/j.jes.2020.03.005 |
21 |
HOU L J, WANG R, YIN G Y, et al. Nitrogen fixation in the intertidal sediments of the Yangtze Estuary: Occurrence and environmental implications. Journal of Geophysical Research: Biogeosciences, 2018, 123 (3): 936- 944.
doi: 10.1002/2018JG004418 |
22 |
MARCARELLI A M, WURTSBAUGH W A. Temperature and nutrient supply interact to control nitrogen fixation in oligotrophic streams: An experimental examination. Limnology and Oceanography, 2006, 51 (5): 2278- 2289.
doi: 10.4319/lo.2006.51.5.2278 |
23 |
FULWEILER R W, BROWN S M, NIXON S W, et al. Evidence and a conceptual model for the co-occurrence of nitrogen fixation and denitrification in heterotrophic marine sediments. Marine Ecology Progress Series, 2013, 482, 57- 68.
doi: 10.3354/meps10240 |
24 | GIER J, SOMMER S, LOSCHER C R, et al. Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone. Biogeosciences, 2016, 13(14), 4065- 4080. |
25 |
SAWICKA J E, JORGENSEN B B, BRUCHERT V. Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments. Biogeosciences, 2012, 9 (8): 3425- 3435.
doi: 10.5194/bg-9-3425-2012 |
26 | ZHOU X B, SMITH H, SILVA A G, et al. Differential responses of dinitrogen fixation, Diazotrophic Cyanobacteria and ammonia oxidation reveal a potential warming-induced imbalance of the N-Cycle in biological soil crusts. Plos One, 2016, 11 (10): 129- 131. |
27 | RIGGSBEE J A, ORR C H, LEECH D M, et al. Suspended sediments in river ecosystems: Photochemical sources of dissolved organic carbon, dissolved organic nitrogen, and adsorptive removal of dissolved iron. Journal of Geophysical Research-Biogeosciences, 2008, 113 (G3): 121. |
28 | KNAPP A N. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen . Frontiers in Microbiology, 2012, (3): 12. |
29 | 李祥, 黄勇, 巫川, 等. Fe2 +和Fe3 +对厌氧氨氧化污泥活性的影响 . 环境科学, 2014, 35 (11): 4224- 4229. |
30 | 邹小鲁, 蔡克强, 黄维南. 南岭黄檀根瘤固氮酶和吸氢酶活性研究. 亚热带植物通讯, 1995, (2): 22- 25. |
31 | BURRIS R H. Comparative study of the response of Azotobacter vinelandii and Acetobacter diazotrophicus to changes in pH. Protoplasma, 1994, 183 (1): 62- 66. |
32 | 贺天立. pH和温度对束毛藻和鳄球藻的生长、固氮及同位素分馏影响 [D]. 福建 厦门: 厦门大学, 2019. |
33 | 林巧云. 寡营养南海无光区和富营养九龙江河口固氮作用初探 [D]. 福建 厦门: 厦门大学, 2019. |
34 | 陈磊, 邵志伟, 高兴, 等. 大豆固氮相关的硫酸盐转运基因进化分析. 大豆科学, 2018, 37 (5): 697- 703. |
35 |
KNOBLAUCH C, JORGENSEN B B. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Environmental Microbiology, 1999, 1 (5): 457- 467.
doi: 10.1046/j.1462-2920.1999.00061.x |
36 |
TANG C, ROBSON A D, DILWORTH M J. The role of iron in nodulation and nitrogen fixation in Lupinus angustifolius L. New Phytologist, 1990, 114 (2): 173- 182.
doi: 10.1111/j.1469-8137.1990.tb00388.x |
37 |
HOLGUIN G, VAZQUEZ P, BASHAN Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biology and Fertility of Soils, 2001, 33 (4): 265- 278.
doi: 10.1007/s003740000319 |
38 |
ZHENG Z Z, WAN X H, XU M N, et al. Effects of temperature and particles on nitrification in a eutrophic coastal bay in southern China. Journal of Geophysical Research-Biogeosciences, 2017, 122 (9): 2325- 2337.
doi: 10.1002/2017JG003871 |
39 |
陈琴, 戴俊, 廖兴文, 等. 杉木与固氮树种混交对土壤有机质及氮含量的影响. 广西林业科学, 2016, 45 (2): 149- 153.
doi: 10.3969/j.issn.1006-1126.2016.02.006 |
40 |
TICHI M A, TABITA F R. Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway. Archives of Microbiology, 2000, 174 (5): 322- 333.
doi: 10.1007/s002030000209 |
41 | BRANDES J A, DEVOL A H. A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling. Global Biogeochemical Cycles, 2002, 16 (4): 131. |
42 | 朱坤, 吴莹, 齐丽君. 上海城市内河中有机碳含量的时空变化及影响因素分析. 华东师范大学学报(自然科学版), 2020, (1): 150- 158. |
43 |
WADE J, WATERGOUSE H, ROCHE L. M, et al. Structural equation modeling reveals iron (hydr)oxides as a strong mediator of N mineralization in California agricultural soils. Geoderma, 2018, 315, 120- 129.
doi: 10.1016/j.geoderma.2017.11.039 |
[1] | Guoyu YIN, Dongsheng ZHENG, Ye LI, Ye HUANG, Min LIU. Geographical pattern and driving mechanism of antibiotics and antibiotic resistance genes in estuarine sediment of China [J]. Journal of East China Normal University(Natural Science), 2024, 2024(6): 86-98. |
[2] | Hao CHEN, Xianqiang HE, Run LI, Fang CAO. Machine learning-based remote sensing retrievals of dissolved organic carbon in the Yangtze River Estuary [J]. Journal of East China Normal University(Natural Science), 2024, 2024(4): 123-136. |
[3] | Jiaming CHEN, Shiming WANG, Rongrong YANG, Ziyan CHEN, Xia LIANG, Lijun HOU. Temperature adaptability of dark carbon fixation in seawater fromthe Yangtze River Estuary [J]. Journal of East China Normal University(Natural Science), 2024, 2024(1): 104-112. |
[4] | Yixuan FANG, Maotian LI, Xiaoqiang LIU, Yan SONG, Mudong LIN, Huikun YAO. Response of heavy metal distribution of surface sediments to aquaculture in Sansha Bay, Fujian [J]. Journal of East China Normal University(Natural Science), 2024, 2024(1): 144-156. |
[5] | Yang CAO, Dungang GU, Guanghui LI, Minsheng HUANG, Wenhui HE. A review on the application of slow-release oxygen materials in the remediation of polluted rivers and lakes [J]. Journal of East China Normal University(Natural Science), 2024, 2024(1): 9-16. |
[6] | Zhi JIN, Jianrong ZHU, Wei QIU. Effects of cascade reservoirs in the Yangtze River Basin on estuarine saltwater intrusion and freshwater resources during late summer and early autumn [J]. Journal of East China Normal University(Natural Science), 2024, 2024(1): 90-103. |
[7] | Xinyue ZHANG, Bing DENG, Jinzhou DU. A historical sedimentary record of glacial activity in Krossfjorden, Arctic [J]. Journal of East China Normal University(Natural Science), 2023, 2023(3): 43-52. |
[8] | Yingxin ZHANG, Wenxiang ZHANG, Benwei SHI, Yaping WANG. Study on sediment stability between vegetation and bare flats in a muddy intertidal flat: A case study for Chongming Dongtan in the Yangtze River Estuary [J]. Journal of East China Normal University(Natural Science), 2022, 2022(6): 169-177. |
[9] | Zhipeng LI, Jianrong ZHU. Numerical simulation of the North Branch regime change impact on saltwater intrusion in the Yangtze River Estuary from 2007 to 2016 [J]. Journal of East China Normal University(Natural Science), 2022, 2022(3): 109-124. |
[10] | Chunyi YANG, Guangxiang MA, Junjie GU, Jiayan GU, Guofu HE, Weixin KONG, Gensen YANG. Study on ecological environmental effects of sediment dredging: A case study on river regulation in Shandong Province [J]. Journal of East China Normal University(Natural Science), 2022, 2022(3): 61-70. |
[11] | Xiaofei HAN, Yanlin DU, Jianxi JIA, Bin DONG, Shuangshuang SHI. The basis of late Pleistocene activity at the Tianzhuang fault in Taiyuan, Shanxi Province [J]. Journal of East China Normal University(Natural Science), 2022, 2022(1): 148-158. |
[12] | Yiping ZHU, Xiaofei LI, Xia LIANG. Content and ecological risk assessment of heavy metals in the surface sediments of Qingcaosha Reservoir in Shanghai [J]. Journal of East China Normal University(Natural Science), 2021, 2021(2): 54-62. |
[13] | Jing HUANG, Tongtong ZHENG, Aihua WANG, Wenjing LI, Zhanghua WANG. Comparison of different extraction methods for alkaline earth metals and its implications: A case study of the surficial sediments from Ningbo Plain [J]. Journal of East China Normal University(Natural Science), 2021, 2021(2): 73-84. |
[14] | Rasheed ADESINA, Olusegun DADA, Yinusa ASIWAJU-BELLO, Zhiguo HE. Erodibility of cohesive sediments along the Nigerian transgressive mud coast: A preliminary experimental study [J]. Journal of East China Normal University(Natural Science), 2020, 2020(S1): 120-124. |
[15] | I. Mohamed ABDUALLAH M., Tangyan LIU. A review about tectonic and sedimentary input evolution of the Red Sea rifting basin [J]. Journal of East China Normal University(Natural Science), 2020, 2020(S1): 74-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||