Journal of East China Normal University(Natural Science) ›› 2023, Vol. 2023 ›› Issue (5): 147-163.doi: 10.3969/j.issn.1000-5641.2023.05.013
• Data Analytics • Previous Articles Next Articles
Lianjun SHENG1, Zhixuan TANG2, Xiaoliang MAO1, Fan BAI3, Dingjiang HUANG2,*()
Received:
2023-07-01
Online:
2023-09-25
Published:
2023-09-20
Contact:
Dingjiang HUANG
E-mail:djhuang@dase.ecnu.edu.cn
CLC Number:
Lianjun SHENG, Zhixuan TANG, Xiaoliang MAO, Fan BAI, Dingjiang HUANG. Smoke detection based on spatial and frequency domain methods[J]. Journal of East China Normal University(Natural Science), 2023, 2023(5): 147-163.
1 | 李孟超, 王允平, 李献伟, 等.. 智能变电站及技术特点分析. 电力系统保护与控制, 2010, 38 (18): 59- 62,79. |
2 | 唐慧明, 张健.. 变电站远程图像监控系统设计. 电力系统自动化, 2001, (7): 56- 58. |
3 |
宋伟, 王玉平, 张文杰, 等.. 基于颜色与运动特征的变电站实时烟雾检测. 传感器与微系统, 2015, 34 (12): 127- 130.
doi: 10.13873/J.1000-9787(2015)12-0127-04 |
4 | TÖREYIN B U, DEDEOĞLU Y, CETIN A E. Wavelet based real-time smoke detection in video [C]// 2005 13th European Signal Processing Conference. IEEE, 2005. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7077943. |
5 | YU C Y, ZHANG Y M, FANG J, et al. Texture analysis of smoke for real-time fire detection [C]// 2009 2nd International Workshop on Computer Science and Engineering. IEEE, 2009: 511-515. DOI: 10.1109/WCSE.2009.864 |
6 | ALAMGIR N, NGUYEN K, CHANDRAN V, et al.. Combining multi-channel color space with local binary co-occurrence feature descriptors for accurate smoke detection from surveillance videos. Fire Safety Journal, 2018, 102, 1- 10. |
7 | FRIZZI S, KAABI R, BOUCHOUICHA M, et al. Convolutional neural network for video fire and smoke detection [C]// IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016: 877-882. |
8 | 赵丽宏, 付雪, 肖博宇, 等.. 基于卷积神经网络的森林火灾烟雾探测算法研究. 中国新技术新产品, 2019, (12): 23- 24. |
9 | GAGLIARDI A, DE GIOIA F, SAPONARA S.. A real-time video smoke detection algorithm based on Kalman filter and CNN. Journal of Real-Time Image Processing, 2021, 18, 2085- 2095. |
10 |
VALIKHUJAEV Y, ABDUSALOMOV A, CHO Y I.. Automatic fire and smoke detection method for surveillance systems based on dilated CNNs. Atmosphere, 2020, 11 (11): 1241.
doi: 10.3390/atmos11111241 |
11 | WU Y L, CHEN M H, WO Y, et al.. Video smoke detection base on dense optical flow and convolutional neural network. Multimedia Tools and Applications, 2021, 80, 35887- 35901. |
12 |
MARDANI K, VRETOS N, DARAS P.. Transformer-based fire detection in videos. Sensors, 2023, 23 (6): 3035.
doi: 10.3390/s23063035 |
13 | ALMEIDA J S, HUANG C, NOGUEIRA F G, et al.. EdgeFireSmoke: A novel lightweight cnn model for real-time video fire–smoke detection. IEEE Transactions on Industrial Informatics, 2022, 18 (11): 7889- 7898. |
14 |
CHEN X, XUE Y P, ZHU Y L, et al.. A novel smoke detection algorithm based on improved mixed Gaussian and YOLOv5 for textile workshop environments. IET Image Processing, 2023, 17, 1991- 2004.
doi: 10.1049/ipr2.12719 |
15 | DE VENÂNCIO P V A B, CAMPOS R J, REZENDE T M, et al.. A hybrid method for fire detection based on spatial and temporal patterns. Neural Computing and Applications, 2023, 35 (13): 9349- 9361. |
16 | WU Z S, XUE R, LI H.. Real-time video fire detection via modified YOLOv5 network model. Fire Technology, 2022, 58, 2377- 2403. |
17 | YUAN F N, SHI Y, ZHANG L, et al.. A cross-scale mixed attention network for smoke segmentation. Digital Signal Processing, 2023, 134, 103924. |
18 | AHN Y, CHOI H, KIM B S.. Development of early fire detection model for buildings using computer vision-based CCTV. Journal of Building Engineering, 2023, 65, 105647. |
19 | HUO Y N, ZHANG Q X, JIA Y, et al.. A deep separable convolutional neural network for multiscale image-based smoke detection. Fire Technology, 2022, 58, 1445- 1468. |
20 | PICCARDI M. Background subtraction techniques: A review [C]// 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583). IEEE, 2004: 3099-3104. |
21 | FARNEBÄCK G. Two-frame motion estimation based on polynomial expansion [C]// Image Analysis, SCIA 2003, Lecture Notes in Computer Science, vol 2749. Berlin: Springer, 2003: 363-370. |
22 | SINGLA N.. Motion detection based on frame difference method. International Journal of Information & Computation Technology, 2014, 4 (15): 1559- 1565. |
23 | COOLEY JW, LEWIS PA, WELCH PD.. The fast Fourier transform and its applications. IEEE Transactions on Education, 1969, 12 (1): 27- 34. |
24 | AHMED N, NATARAJAN T, RAO K R.. Discrete cosine transform. IEEE Transactions on Computers, 1974, C-23 (1): 90- 93. |
25 | ZHANG D S. Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval [M]. 2nd ed. Cham : Springer , 2019: 45-54. |
26 | JI S W, XU W, YANG M, et al.. 3D convolutional neural networks for human action recognition. IEEE Transactions on Tattern Analysis and Machine Intelligence, 2013, 35 (1): 221- 231. |
27 | YUAN F N. Video smoke detection [EB/OL]. (2011-08-28)[2023-04-03]. http://staff.ustc.edu.cn/ ~ yfn/vsd.html. |
[1] | Chao KONG, Jiahui CHEN, Dan MENG, Huabin DIAO, Wei WANG, Liping ZHANG, Tao LIU. Personalized knowledge concept recommendation for massive open online courses [J]. Journal of East China Normal University(Natural Science), 2024, 2024(5): 32-44. |
[2] | Yongzhuo ZHANG, Qingfeng ZHUGE, Edwin Hsing-Mean SHA, Yuhong SONG. Parallel block-based stochastic computing with adapted quantization [J]. Journal of East China Normal University(Natural Science), 2024, 2024(2): 76-85. |
[3] | Caidie HUANG, Xinping WANG, Liangyu CHEN, Yong LIU. Research on a knowledge tracking model based on the stacked gated recurrent unit residual network [J]. Journal of East China Normal University(Natural Science), 2022, 2022(6): 68-78. |
[4] | Haojie WU, Yanjie WANG, Wenbing CAI, Fei WANG, Yang LIU, Peng PU, Shaohui LIN. Correlation operation based on intermediate layers for knowledge method [J]. Journal of East China Normal University(Natural Science), 2022, 2022(5): 115-125. |
[5] | Jizhou LI, Xin LIN. Neural architecture search algorithms based on a recursive structure [J]. Journal of East China Normal University(Natural Science), 2022, 2022(4): 31-42. |
[6] | Bo LIU, Xiaodong BAI, Gengxin ZHANG, Jun SHEN, Jidong XIE, Laiding ZHAO, Tao HONG. Review of deep learning in cognitive radio [J]. Journal of East China Normal University(Natural Science), 2021, 2021(1): 36-52. |
[7] | LAI Yejing, HAO Shanfeng, HUANG Dingjiang. Methods and progress in deep neural network model compression [J]. Journal of East China Normal University(Natural Science), 2020, 2020(5): 68-82. |
[8] | ZHOU Xiaoxu, LIU Yingfeng, FU Yingnan, ZHU Renyu, GAO Ming. Approaches on network vertex embedding [J]. Journal of East China Normal University(Natural Science), 2020, 2020(5): 83-94. |
[9] | LIU Jin, ZHAO Weirui. Stability analysis of neutral neural networks with time-varying delays [J]. Journal of East China Normal University(Natural Science), 2020, 2020(4): 35-44. |
[10] | HE Xiaojuan, GUO Xinshun. Research on an advertising click-through rate prediction model based on feature optimization [J]. Journal of East China Normal University(Natural Science), 2020, 2020(4): 147-155. |
[11] | ZHAO Bo, TIAN Xiu-xia, LI Can. Prediction of power network stability based on an adaptive neural network [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(5): 133-142. |
[12] | SHAO Ming-rui, MA Deng-hao, CHEN Yue-guo, QIN Xiong-pai, DU Xiao-yong. Transfer learning based QA model of FAQ using CQA data [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(5): 74-84. |
[13] | YUAN Pei-sen, ZHANG Yong, LI Mei-ling, GU Xing-jian. Research on trademark image retrieval based on deep Hashing [J]. Journal of East China Normal University(Natural Sc, 2018, 2018(5): 172-182. |
[14] | BAI Mei, WU Hui. Characteristics of sea surface temperature in the Changjiang Estuary and adjacent waters based on a Self-Organizing Map [J]. Journal of East China Normal University(Natural Sc, 2018, 2018(4): 184-194. |
[15] | JING Li-jiao, FU Yun-bin, DONG Qi-wen. The auto-question answering system based on convolution neural network [J]. Journal of East China Normal University(Natural Sc, 2017, 2017(5): 66-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||