1 |
SHEN S, LIU Q, HUANG Z, et al. A survey of knowledge tracing: Models, variants, and applications [EB/OL]. (2024-04-11) [2024-06-19]. https://arxiv.org/pdf/2105.15106.
|
2 |
DWIVEDI P, KANT V, BHARADWAJ K K.. Learning path recommendation based on modified variable length genetic algorithm. Education and Information Technologies, 2018, 23 (2): 819- 836.
|
3 |
DO P, NGUYEN K, VU T N, et al. Integrating knowledge-based reasoning algorithms and collaborative filtering into e-learning material recommendation system [C]// Future Data and Security Engineering: 4th International Conference. 2017: 419-432.
|
4 |
WANG S, WU H, KIM J H, et al. Adaptive learning material recommendation in online language education [C]// Artificial Intelligence in Education. 2019: 298-302.
|
5 |
ZHAO C, ZHAO H, HE M, et al. Cross-domain recommendation via user interest alignment [C]// Proceedings of the ACM Web Conference 2023. 2023: 887-896.
|
6 |
XU B, HUANG Z, LIU J, et al. Learning behavior-oriented knowledge tracing [C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023: 2789-2800.
|
7 |
曾凡智, 许露倩, 周燕, 等.. 面向智慧教育的知识追踪模型研究综述. 计算机科学与探索, 2022, 16 (8): 1742- 1763.
|
8 |
ABDELRAHMAN G, WANG Q, NUNES B.. Knowledge tracing: A survey. ACM Computing Surveys, 2023, 55 (11): 224.
|
9 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2016-09-29) [2024-06-18]. https://doi.org/10.48550/arXiv.1609.02907.
|
10 |
NAKAGAWA H, IWASAWA Y, MATSUO Y. Graph-based knowledge tracing: Modeling student proficiency using graph neural network [C]// IEEE/WIC/ACM International Conference on Web Intelligence. 2019: 156-163.
|
11 |
YANG Y, SHEN J, QU Y, et al. GIKT: A graph-based interaction model for knowledge tracing [C]// Machine Learning and Knowledge Discovery in Databases. 2021: 299-315.
|
12 |
LUO R, LIU F, LIANG W, et al. DAGKT: Difficulty and attempts boosted graph-based knowledge tracing [C]// International Conference on Neural Information Processing. 2022: 255-266.
|
13 |
ZHANG H, BU C, LIU F, et al. APGKT: Exploiting associative path on skills graph for knowledge tracing [C]// Pacific Rim International Conference on Artificial Intelligence. 2022: 353-365.
|
14 |
CUI C, YAO Y, ZHANG C, et al.. DGEKT: A dual graph ensemble learning method for knowledge tracing. ACM Transactions on Information Systems, 2024, 42 (3): 78.
|
15 |
CORBETT A T, ANDERSON J R.. Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-adapted Interaction, 1994, (4): 253- 278.
|
16 |
KÄSER T, KLINGLER S, SCHWING A G, et al.. Dynamic bayesian networks for student modeling. IEEE Transactions on Learning Technologies, 2017, 10 (4): 450- 462.
|
17 |
CEN H, KOEDINGER K, JUNKER B. Learning factors analysis—A general method for cognitive model evaluation and improvement [C]// International Conference on Intelligent Tutoring Systems. 2006: 164-175.
|
18 |
PAVLIK P I, CEN H, KOEDINGER K R. Performance factors analysis—A new alternative to knowledge tracing [C]// Artificial Intelligence in Education. 2009: 531-538.
|
19 |
VIE J J, KASHIMA H. Knowledge tracing machines: Factorization machines for knowledge tracing [C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2019: 750-757.
|
20 |
PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing [C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015: 505-513.
|
21 |
KHAJAH M, LINDSEY R V, MOZER M C. How deep is knowledge tracing? [EB/OL]. (2016-04-08) [2024-06-18]. https://doi.org/10.48550/arXiv.1604.02416.
|
22 |
LIU Y, YANG Y, CHEN X, et al. Improving knowledge tracing via pre-training question embeddings [EB/OL]. (2020-12-09) [2024-06-18]. https://doi.org/10.48550/arXiv.2012.05031.
|
23 |
ZHANG J, SHI X, KING I, et al. Dynamic key-value memory networks for knowledge tracing [C]// Proceedings of the 26th International Conference on World Wide Web. 2017: 765-774.
|
24 |
PANDEY S, KARYPIS G. A self-attentive model for knowledge tracing [EB/OL]. (2019-07-16) [2024-06-18]. https://doi.org/10.48550/arXiv.1907.06837.
|
25 |
GHOSH A, HEFFERNAN N, LAN A S. Context-aware attentive knowledge tracing [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020: 2330-2339.
|
26 |
SONG X, LI J, CAI T, et al.. A survey on deep learning based knowledge tracing. Knowledge-Based Systems, 2022, 258, 110036.
|
27 |
YE Y, SHAN Z. HGKT: Hypergraph-based knowledge tracing for learner performance prediction [C]// 2023 International Joint Conference on Neural Networks. 2023: 1-9.
|
28 |
TONG S, LIU Q, HUANG W, et al. Structure-based knowledge tracing: An influence propagation view [C]// 2020 IEEE International Conference on Data Mining. 2020: 541-550.
|
29 |
SONG X, LI J, TANG Y, et al.. JKT: A joint graph convolutional network based deep knowledge tracing. Information Sciences, 2021, 580, 510- 523.
|
30 |
HE X, DENG K, WANG X, et al. LightGCN: Simplifying and powering graph convolution network for recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020: 639-648.
|