| 1 |
ZHUANG F Z, QI Z Y, DUAN K Y, et al.. A comprehensive survey on transfer learning. Proceedings of the IEEE, 2021, 109 (1): 43- 76.
|
| 2 |
RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf: An astounding baseline for recognition [C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2014: 512-519.
|
| 3 |
HE Y H, ZHANG X Y, SUN J. Channel pruning for accelerating very deep neural networks [C]// 2017 IEEE International Conference on Computer Vision. IEEE, 2017: 1398-1406.
|
| 4 |
WU J X, LENG C, WANG Y H, et al. Quantized convolutional neural networks for mobile devices [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016: 4820-4828.
|
| 5 |
HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network [EB/OL]. (2015-03-09)[2023-11-09]. https://arxiv.org/abs/1503.02531.
|
| 6 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 6848-6856.
|
| 7 |
CAI H, ZHU L G, HAN S. ProxylessNAS: Direct neural architecture search on target task and hardware [EB/OL]. (2019-02-23)[2023-11-20]. https://arxiv.org/pdf/1812.00332.
|
| 8 |
TANAKA H, KUNIN D, YAMINS D L K, et al. Pruning neural networks without any data by iteratively conserving synaptic flow [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. ACM, 2020: 6377-6389.
|
| 9 |
VAN AMERSFOORT J, ALIZADEH M, FARQUHAR S, et al. Single shot structured pruning before training [EB/OL]. (2020-07-01)[2023-11-20]. https://arxiv.org/abs/2007.00389.
|
| 10 |
PAN S J, YANG Q.. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2009, 22 (10): 1345- 1359.
|
| 11 |
LIU Y H, AGARWAL S, VENKATARAMAN S. AutoFreeze: Automatically freezing model blocks to accelerate fine-tuning [EB/OL]. (2021-02-02)[2023-11-20]. https://arxiv.org/abs/2102.01386.
|
| 12 |
KORNBLITH S, NOROUZI M, LEE H, et al.. Similarity of neural network representations revisited. International Conference on Machine Learning, 2019, 97, 3519- 3529.
|
| 13 |
DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database [C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009: 248-255.
|
| 14 |
OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks [C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014: 1717-1724.
|
| 15 |
GUO Y H, SHI H H, KUMAR A, et al. SpotTune: Transfer learning through adaptive fine-tuning [C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 4800-4809.
|
| 16 |
HE C Y, LI S, SOLTANOLKOTABI M, et al. PipeTransformer: Automated elastic pipelining for distributed training of transformers [EB/OL]. (2021-02-05)[2023-11-23]. https://arxiv.org/abs/2102.03161.
|
| 17 |
KRIZHEVSKY K A, HINTON G. Learning multiple layers of features from tiny images [EB/OL]. (2009-04-08) [2023-11-28]. http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf.
|
| 18 |
MAJI S, RAHTU E, KANNALA J, et al. Fine-grained visual classification of aircraft [EB/OL]. (2013-06-21)[2023-11-28]. https://arxiv.org/abs/1306.5151.
|
| 19 |
FAN Y, TIAN F, QIN T, et al. Learning what data to learn [EB/OL]. (2017-02-28)[2023-11-28]. https://arxiv.org/abs/1702.08635.
|
| 20 |
NILSBACK M E, ZISSERMAN A. Automated flower classification over a large number of classes [C]// 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing. IEEE, 2008: 722-729.
|
| 21 |
KRAUSE J, STARK M, JIA D, et al. 3D object representations for fine-grained categorization [C]// 2013 IEEE International Conference on Computer Vision Workshops. IEEE, 2013: 554-561.
|
| 22 |
WAH C, BRANSON S, WELINDER P, et al. The caltech-ucsd birds-200-2011 dataset [EB/OL]. (2011-07-01) [2023-09-22]. https://www.vision.caltech.edu/datasets/cub_200_2011.
|