华东师范大学学报(自然科学版) ›› 2025, Vol. 2025 ›› Issue (6): 29-38.doi: 10.3969/j.issn.1000-5641.2025.06.004

• • 上一篇    下一篇

基于双重决策自适应冻结实现快速准确的迁移学习

何泽锋, 沈富可, 魏同权*()   

  1. 华东师范大学 计算机科学与技术学院, 上海 200062
  • 收稿日期:2024-01-29 出版日期:2025-11-25 发布日期:2025-11-29
  • 通讯作者: 魏同权 E-mail:tqwei@cs.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金 (62272169); 上海市市级科技重大专项 (2021SHZDZX)

Dual decision adaptive freezing for fast and accurate transfer learning

Zefeng HE, Fuke SHEN, Tongquan WEI*()   

  1. School of Computer Science and Technology, East China Normal University, Shanghai 200062, China
  • Received:2024-01-29 Online:2025-11-25 Published:2025-11-29
  • Contact: Tongquan WEI E-mail:tqwei@cs.ecnu.edu.cn

摘要:

随着深度学习的快速发展, 迁移学习作为一种关键的机器学习策略, 通过复用已有模型知识, 有效应对新问题或新领域, 大幅降低了对大量标注数据的依赖, 同时提升了学习效率. 然而, 在迁移学习过程中, 现有的微调策略均面临训练速度与准确性的权衡问题, 全部微调策略可能减小训练速度, 而部分微调策略则可能影响训练准确性. 因此, 如何优化迁移学习过程, 实现快速高效的迁移学习是目前迁移学习领域亟须解决的关键问题. 为了解决这一问题, 提出了一种双重决策自适应冻结方法: 在迁移学习过程中, 首先, 使用组决策模块对神经网络各个层进行决策, 选出可能需要冻结的层; 然后, 对这些层使用层决策模块进行决策, 确定最终需要冻结的层; 最后, 对这些需要冻结的层进行冻结, 以此最大限度地减少错误冻结的可能性, 提高训练的准确性, 同时增大迁移训练速度. 实验结果表明, 与微调整个网络的传统方法相比, 所提出方法将训练速度提升了1.97倍, 且精度损失却很小; 与只微调最后一层相比, 所提出方法将准确率提高了34.52%, 且训练速度损失很小.

关键词: 深度学习, 迁移学习, 图像分类, 模型加速, 自适应冻结

Abstract:

With the rapid development of deep learning, model size and accuracy have been increasing. However, in the quest for greater accuracy, large training datasets are often necessary for training, which often slows down training and exacerbates carbon emissions. To address these challenges, researchers have proposed a number of approaches, including transfer learning. However, existing transfer learning methods either fine-tune the entire network or only a part of it, such as the final classifier layer. The former often leads to slow migration training, and the latter reduces the accuracy of migration training. To solve these problems, a dual-decision adaptive freezing (DDAF) method is proposed for the transfer learning process. First, a group decision module is used to decide on the layers of the neural network that may require freezing. Subsequently, a layer decision module is used to reach a decision on these layers and determine the layers to eventually freeze, thereby finally freezing the layers that need to be frozen, to minimize the possibility of erroneous freezing, improve the accuracy of training, and accelerate the speed of transfer learning training. Extensive experiments showed that the proposed method improved training speed by 1.97 times with minimal loss of accuracy compared to the traditional method of fine-tuning the entire network and significantly improved the accuracy by 34.52% with minimal loss of training speed compared to fine-tuning only the last layer.

Key words: deep learning, transfer learning, image classification, model acceleration, adaptive freezing

中图分类号: