华东师范大学学报(自然科学版) ›› 2019, Vol. 2019 ›› Issue (5): 133-142.doi: 10.3969/j.issn.1000-5641.2019.05.011

• 新兴应用中的计算机智能 • 上一篇    下一篇

基于自适应神经网络的电网稳定性预测

赵波, 田秀霞, 李灿   

  1. 上海电力大学 计算机科学与技术学院, 上海 200090
  • 收稿日期:2019-07-27 出版日期:2019-09-25 发布日期:2019-10-11
  • 通讯作者: 田秀霞,女,教授,研究方向为数据库安全、隐私保护、访问控制、面向电力用户利益的安全计算、大数据分析等.E-mail:xxtian@shiep.edu.cn. E-mail:xxtian@shiep.edu.cn
  • 作者简介:赵波,男,硕士研究生,研究方向为电力大数据、窃电保护.E-mail:18035540386@163.com.
  • 基金资助:
    国家自然科学基金(61772327,61532021)

Prediction of power network stability based on an adaptive neural network

ZHAO Bo, TIAN Xiu-xia, LI Can   

  1. College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090, China
  • Received:2019-07-27 Online:2019-09-25 Published:2019-10-11

摘要: 电网安全稳定是电力企业乃至整个社会改革、发展、稳定的基础.随着电网结构复杂度的增加,更需要电网安全和稳定地运行,这是保证国民经济快速良好发展的重要要求.基于机器学习方法,提出了一种优化神经网络的电网稳定性预测模型,并和经典机器学习方法进行了横向对比.通过UCI2018年电网稳定性仿真数据集的实验分析,结果表明,所提出的方法可以达到更高的预测准确率,同时也为电力大数据的研究提供了新思路.

关键词: 电网稳定性, 支持向量机, 决策树, 神经网络

Abstract: The safety and stability of the power grid serves as the basis for reform, development, and stability of power enterprises as well as for broader society. With the increasing complexity of power grid structures, safety and stability of the power grid is important for ensuring the rapid and effective development of the national economy. In this paper, we propose an optimal neural network stability prediction model and compare performance with classical machine learning methods. By analyzing the UCI2018 grid stability simulation dataset, the experimental results show that the proposed method can achieve higher prediction accuracy and provide a new approach for research of power big data.

Key words: grid stability, support vector machine, decision tree, neural network

中图分类号: