[1]刑雅囡. 平原河网区城市河道底质营养盐释放行为及机理研究[D]. 南京: 河海大学, 2006. [2]沈叔云. 曝气扰动深度对底泥内源氮硝化—反硝化耦合效应及底泥耗氧速率测定方法优化研究[D]. 上海:华东师范大学, 2014. [3]王尚, 李大鹏. 不同扰动强度下城市重污染河道底泥对磷吸收和固定的影响[J]. 环境科学, 2014(6):21712177. [4]HE Y, CHEN Y, ZHANG Y, et al. Role of aerated turbulence in the fate of endogenous nitrogen from malodorous river Sediments[J]. Environmental Engineering Science, 2013, 30(1):1116. [5]张一璠, 陈玉霞, 何岩, 等. 水体扰动对黑臭河道内源氮营养盐赋存形式的影响[J]. 华东师范大学学报:自然科学版, 2013(2):110. [6]于玉彬, 黄勇. 城市河流黑臭原因及机理的研究进展[J]. 环境科技, 2010,23(A2): 111114. [7]李真, 黄民生, 何岩, 等. 铁和硫的形态转化与水体黑臭的关系[J]. 环境科学与技术, 2010(S1): 13. [8]徐祖信. 河流污染治理技术与实践[M]. 北京: 中国水利水电出版社, 2003. [9]白钰. 哈尔滨信义沟沉积物中碳、氮、磷、硫分布特征及其相关性研究[D]. 哈尔滨: 东北农业大学, 2012.[10]焦涛. 城市河道沉积物—水体系硫化物赋存特征及反硫化过程研究[D]. 南京: 河海大学, 2007.[11]DITORO D M. Sediment Flux Modeling[M]. New York: John Wiley & Sons Inc, 2001.[12]李伟杰, 汪永辉. 铁离子在水体中价态的转化及其与河道黑臭的关系[J]. 净水技术, 2007,26(2): 3537.[13]HOLMER M, STORKHOLM P. Sulphate reduction and sulphur cycling in lake sediments: A review[J]. Freshwater Biology, 2001,46(4):431451.[14]VALDEMARSEN T, KRISTENSEN E, HOLMER M. Metabolic threshold and sulfidebuffering in diffusion controlled marine sediments impacted by continuous organic enrichment[J]. Biogeochemistry, 2009,95(23):335353.[15]HUNGER S, BENNING L G. Greigite: A true intermediate on the polysulfide pathway to pyrite[J]. Geochemical Transactions, 2007,8(1):120.[16]RICKARD D, LUTHER G W. Chemistry of iron sulfides[J]. Chemical Reviews, 2007,107(2):514562.[17]MORGAN B, BURTON E D, RATE A W. Iron monosulfide enrichment and the presence of organosulfur in eutrophic estuarine sediments[J]. Chemical Geology, 2012,296297:119130.[18]KEENE A F, JOHNSTON S G, BUSH R T, et al. Effects of hyperenriched reactive Fe on sulfidisation in a tidally inundated acid sulfate soil wetland[J]. Biogeochemistry, 2011,103(13):263279.[19]贺纪正, 张丽梅. 氨氧化微生物生态学与氮循环研究进展[J]. 生态学报, 2009,29(1):406415.[20]何岩, 沈叔云, 黄民生, 等. 城市黑臭河道底泥内源氮硝化—反硝化作用研究[J]. 生态环境学报, 2012(6):11661170.[21]朱先征, 何岩, 黄民生, 等. 城市内河沉积物中反硝化作用的研究进展[J]. 环境科学与技术, 2012,35(6):6470.[22]ROBERTS K L, EATE V M, EYRE B D, et al. Hypoxic events stimulate nitrogen recycling in a shallow saltwedge estuary: The Yarra River Estuary, Australia[J]. Limnology and Oceanography, 2012,57(5):14271442.[23]DONG L F, NAGASIMA S M, SMITH C J, et al. Dissimilatory reduction of nitrate to ammonium, not denitrification or anammox, dominates benthic nitrate reduction in tropical estuaries[J]. Limnology and Oceanography, 2011,56(1):279291.[24]NIZZOLI D, CARRARO E, NIGRO V, et al. Effect of organic enrichment and thermal regime on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in hypolimnetic sediments of two lowland lakes[J]. Water Research, 2010,44(9):27152724.[25]CONLEY D J, HUMBORG C, RAHM L, et al. Hypoxia in the baltic sea and basinscale changes in phosphorus biogeochemistry[J]. Environmental Science & Technology, 2002, 36(24):53155320.[26]KEMP W M, BOYNTON W R, ADOLF J E, et al. Eutrophication of Chesapeake Bay: historical trends and ecological interactions[J]. Marine Ecology Progress Series, 2005, 303(21):129.[27]ZHOU A, TANG H, WANG D. Phosphorus adsorption on natural sediments: Modeling and effects of pH and sediment composition[J]. Water Research, 2005, 39(7):12451254.[28]PENN M R, AUER M T, DOERR S M, et al. Seasonality in phosphorus release rates from the sediments of a hypereutrophic lake under a matrix of pH and redox conditions[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57(5):10331041.[29]KRAAL P, BURTON E D, ROSE A L, et al. Decoupling between water column oxygenation and benthic phosphate dynamics in a shallow eutrophic estuary[J]. Environmental Science & Technology, 2013,47:31143121.[30]WHITMIRE S L, HAMILTON S K. Rapid removal of nitrate and sulfate in freshwater wetland sediments[J]. Journal of Environment Quality, 2005, 34(6):20622071.[31]SHAO M, ZHANG T, FANG H H. Sulfurdriven autotrophic denitrification: diversity, biochemistry, and engineering applications[J]. Applied Microbiology and Biotechnology, 2010, 88(5):10271042.[32]CRAIG L, BAHR J M, RODEN E E. Localized zones of denitrification in a floodplain aquifer in Southern Wisconsin, USA[J]. Hydrogeology Journal, 2010,18(8):18671879.[33]JUNCHER J C, JACOBSEN O S, ELBERLING B, et al. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment[J]. Environmental Science & Technology, 2009, 43(13):48514857.[34]SCHWIENTEK M, EINSIEDL F, STICHLER W, et al. Evidence for denitrification regulated by pyrite oxidation in a heterogeneous porous groundwater system[J]. Chemical Geology, 2008, 255(12):6067.[35]HAYAKAWA A, HATAKEYAMA M, ASANO R, et al. Nitrate reduction coupled with pyrite oxidation in the surface sediments of a sulfiderich ecosystem[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(2):639649.[36]TORRENTO C, URMENETA J, OTERO N, et al. Enhanced denitrification in groundwater and sediments from a nitratecontaminated aquifer after addition of pyrite[J]. Chemical Geology, 2011, 287(12):90101.[37]HAAIJER S C M, LAMERS L P M, Smolders A J P, et al. Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands[J]. Geomicrobiology Journal, 2007, 24(5):391401.[38]BURGIN A J, HAMILTON S K. NO-3Driven SO2-4 production in freshwater ecosystems: Implications for N and S Cycling[J]. Ecosystems, 2008, 11(6):908922.[39]RUTTING T, BOECKX P, MULLER C, et al. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle[J]. Biogeosciences, 2011, 8(7):17791791.[40]SENGA Y, MOCHIDA K, FUKUMORI R, et al. N2O accumulation in estuarine and coastal sediments: The influence of H2S on dissimilatory nitrate reduction[J]. Estuarine, Coastal and Shelf Science, 2006, 67(12):231238.[41]YANG X, HUANG S, WU Q, et al. Nitrate reduction coupled with microbial oxidation of sulfide in river sediment[J]. Journal of Soils and Sediments, 2012, 12(9):14351444.[42]董凌霄, 吕永涛, 韩勤有, 等. 硫酸盐还原对氨氧化的影响及其抑制特性研究[J]. 西安建筑科技大学学报:自然科学版, 2006,38(3):425428.[43]孙慧卿. 影响湖泊沉积物表层磷行为的关键因素研究[D]. 南京: 南京林业大学, 2012.[44]MCMANUS J, BERELSON W M, COALE K H, et al. Phosphorus regeneration in continental margin sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(14):28912907.[45]HUTCHISON K J, HESTERBERG D. Dissolution of phosphate in a phosphorusenriched ultisol as affected by microbial reduction[J]. J Environ Qual, 2004, 33(5):17931802.[46]STEENBERGH A K, BODELIER P L E, HOOGVELD H L, et al. Phosphatases relieve carbon limitation of microbial activity in Baltic Sea sediments along a redoxgradient[J]. Limnology and Oceangraphy, 2011, 56:20182026.[47]COOK P L M, HOLLAND D P, LONGMORE A R. Effect of a flood event on the dynamics of phytoplankton and biogeochemistry in a large temperate Australian lagoon[J]. Limnology and Oceanography, 2010, 55(3):11231133. |