 
  中国综合性科技类核心期刊(北大核心)
中国综合性科技类核心期刊(北大核心)华东师范大学学报(自然科学版) ›› 2021, Vol. 2021 ›› Issue (1): 36-52.doi: 10.3969/j.issn.1000-5641.201922017
        
               		刘波1, 白晓东1,*( ), 张更新1, 沈俊2, 谢继东1, 赵来定1, 洪涛1
), 张更新1, 沈俊2, 谢继东1, 赵来定1, 洪涛1
                  
        
        
        
        
    
收稿日期:2019-11-16
									
				
									
				
									
				
											出版日期:2021-01-25
									
				
											发布日期:2021-01-28
									
			通讯作者:
					白晓东
											E-mail:xdbai@njupt.edu.cn
												基金资助:
        
               		Bo LIU1, Xiaodong BAI1,*( ), Gengxin ZHANG1, Jun SHEN2, Jidong XIE1, Laiding ZHAO1, Tao HONG1
), Gengxin ZHANG1, Jun SHEN2, Jidong XIE1, Laiding ZHAO1, Tao HONG1
			  
			
			
			
                
        
    
Received:2019-11-16
									
				
									
				
									
				
											Online:2021-01-25
									
				
											Published:2021-01-28
									
			Contact:
					Xiaodong BAI   
											E-mail:xdbai@njupt.edu.cn
												摘要:
无线通信业务的发展使得频谱资源变得越发紧张, 而现有的频谱利用效率却不高, 这一矛盾很大程度上可归结为频谱的静态分配策略. 认知无线电(Cognitive Radio, CR)技术被广泛认为是解决频谱静态分配问题的可行方案. 深度学习作为机器学习的新兴分支, 近几年在学术界和产业界都取得了许多成果, 成为人工智能的驱动性技术之一. 对深度学习在认知无线电中的应用进行了调研, 简要介绍了认知无线电和深度学习各自的发展, 且着重介绍了深度学习算法在频谱预测、频谱环境感知、信号分析等认知无线电关键技术环节中的应用, 并在最后对此进行了总结和探讨.
中图分类号:
刘波, 白晓东, 张更新, 沈俊, 谢继东, 赵来定, 洪涛. 深度学习在认知无线电中的应用研究综述[J]. 华东师范大学学报(自然科学版), 2021, 2021(1): 36-52.
Bo LIU, Xiaodong BAI, Gengxin ZHANG, Jun SHEN, Jidong XIE, Laiding ZHAO, Tao HONG. Review of deep learning in cognitive radio[J]. Journal of East China Normal University(Natural Science), 2021, 2021(1): 36-52.
 
												
												表1
深度学习模型在CR中应用概况"
| CR应用 | 深度学习模型 | 相关研究及文献 | 
| 调制识别 | CNN | [ | 
| DBN | [ | |
| RNN | GRU (Gate Recurrent Unit)[ | |
| 其他 | GAN(Generative Adversarial Networks)[ | |
| 频谱预测 | LSTM | [ | 
| CNN | [ | |
| RNN | [ | |
| 频谱感知 | CNN | [ | 
| DBN | [ | |
| 其他 | DNN (Deep Neural Networks, DNN)[ | |
| 资源分配 | CNN | [ | 
| 1 | 武秀广, 宋旭, 任培明. 数字通信世界, 认知无线电关键技术及应用. 2014, (2): 57- 60. doi: 10.3969/j.issn.1672-7274.2014.02.013 | 
| 2 | TANDRA R, SAHAI A. Fundamental limits on detection in low SNR under noise uncertainty [C]//2005 International Conference on Wireless Networks, Communications and Mobile Computing. IEEE, 2005(1): 464-469. DOI: 10.1109/WIRLES.2005.1549453. | 
| 3 | MITOLA J, MAGUIRE G Q. Software Radio Technologies: Selected Readings, Cognitive radio: Making software radios more personal. 1999, 6 (4): 413- 418. | 
| 4 | WU Q H, DING G R, WANG J L, et al. IEEE Transactions on Wireless Communications, Spatial-temporal opportunity detection for spectrum-heterogeneous cognitive radio networks: Two-dimensional sensing. 2013, 12 (2): 516- 526. doi: 10.1109/TWC.2012.122212.111638 | 
| 5 | HAYKIN S. IEEE Journal on Selected Areas in Communications, Cognitive radio: Brain-empowered wireless communications. 2005, 23 (2): 201- 220. doi: 10.1109/JSAC.2004.839380 | 
| 6 | 郭永明, 李军芳, 李宁. 电信科学, 未来智能无线电将对频谱管理带来深刻影响. 2012, 28 (7): 14- 15. | 
| 7 | DONG X, LI Y, WEI S Q. Chinese Science Bulletin, Design and implementation of a cognitive engine functional architecture. 2012, 57 (28): 3698- 3704. doi: 10.1007/s11434-012-5102-6 | 
| 8 | CLANCY C, HECKER J, STUNTEBECK E, et al. IEEE Wireless Communications, Applications of machine learning to cognitive radio networks. 2007, 14 (4): 47- 52. doi: 10.1109/MWC.2007.4300983 | 
| 9 | HINTON G, SALAKHUTDINOV R. Science, Reducing the dimensionality of data with neural networks. 2006, 313 (5786): 504- 508. doi: 10.1126/science.1127647 | 
| 10 | 陈远哲, 匡俊, 刘婷婷, 等. 华东师范大学学报(自然科学版), 共指消解技术综述. 2019, (5): 16- 35. doi: 10.3969/j.issn.1000-5641.2019.05.002 | 
| 11 | ZHANG M, DIAO M, GUO L M. IEEE Access, Convolutional neural networks for automatic cognitive radio waveform recognition. 2017, (5): 11074- 11082. doi: 10.1109/ACCESS.2017.2716191 | 
| 12 | YASHASHWI K, SETHI A, CHAPORKAR P. IEEE Wireless Communications Letters, A learnable distortion correction module for modulation recognition. 2019, 8 (1): 77- 80. doi: 10.1109/LWC.2018.2855749 | 
| 13 | GAO L, ZHANG X, GAO J, et al. IEEE Access, Fusion image based radar signal feature extraction and modulation recognition. 2019, (7): 13135- 13148. doi: 10.1109/ACCESS.2019.2892526 | 
| 14 | WANG Y, LIU M, YANG J, et al. IEEE Transactions on Vehicular Technology, Data-driven deep learning for automatic modulation recognition in cognitive radios. 2019, 68 (4): 4074- 4077. doi: 10.1109/TVT.2019.2900460 | 
| 15 | ZHANG Q, XU Z, ZHANG P. Modulation recognition using wavelet-assisted convolutional neural network [C]//International Conference on Advanced Technologies for Communications. IEEE, 2018: 100-104. | 
| 16 | HIREMATH S M, DESHMUKH S, RAKESH R. Blind identification of radio access techniques based on time-frequency analysis and convolutional neural network [C]//TENCON 2018 − 2018 IEEE Region 10 Conference. IEEE, 2018: 1163-1167. | 
| 17 | WU H, LI Y, ZHOU L, et al. Electronics Letters, Convolutional neural network and multi-feature fusion for automatic modulation classification. 2019, 55 (16): 895- 897. doi: 10.1049/el.2019.1789 | 
| 18 | GU H, WANG Y, HONG S, et al. IEEE Access, Blind channel identification aided generalized automatic modulation recognition based on deep learning. 2019, (7): 110722- 110729. doi: 10.1109/ACCESS.2019.2934354 | 
| 19 | YANG X. IEEE Access, Fusion methods for CNN-based automatic modulation classification. 2019, (7): 66496- 66504. doi: 10.1109/ACCESS.2019.2918136 | 
| 20 | WANG D, ZHANG M, LI J, et al. Optics Express, Intelligent constellation diagram analyzer using convolutional neural network-based deep learning. 2017, 25 (15): 17150- 17166. doi: 10.1364/OE.25.017150 | 
| 21 | O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//International Conference on Engineering Applications of Neural Networks 2016: Engineering Applications of Neural Networks. Cham: Springer, 2016: 213-226.. | 
| 22 | LI R, LI L, YANG S, et al. IEEE Communications Letters, Robust automated VHF modulation recognition based on deep convolutional neural networks. 2018, 22 (5): 946- 949. doi: 10.1109/LCOMM.2018.2809732 | 
| 23 | YONGSHI W, JIE G, HAO L, et al. CNN-based modulation classification in the complicated communication channel [C]//2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). 2017: 512-516. | 
| 24 | NADEEM F, HOON C, GUONG S, et al. Computers and Electrical Engineering, Elsevier Ltd., Automatic modulation format / bit-rate classification and signal-to-noise ratio estimation using asynchronous delay-tap sampling. 2015, 47, 126- 133. doi: 10.1016/j.compeleceng.2015.09.005 | 
| 25 | PENG S L, JIANG H Y, WANG H X, et al. Modulation classification using convolutional neural network based deep learning model [C]//2017 26th Wireless and Optical Communication Conference (WOCC). IEEE, 2017. DOI: 10.1109/WOCC.2017.7929000. | 
| 26 | SADEGHI M, LARSSON E G. IEEE Wireless Communications Letters, Adversarial attacks on deep-learning based radio signal classification. 2019, 8 (1): 213- 216. doi: 10.1109/LWC.2018.2867459 | 
| 27 | ZHANG Y, LIU T, ZHANG L B, et al. A deep learning approach for modulation recognition [C]//2018 IEEE 23rd International Conference on Digital Signal Processing (DSP). IEEE, 2018. DOI: 10.1109/ICDSP.2018.8631811. | 
| 28 | MENDIS G J, WEI J, MADANAYAKE A. Deep learning-based automated modulation classification for cognitive radio [C]//2016 IEEE International Conference on Communication Systems (ICCS). IEEE, 2016. DOI: 10.1109/ICCS.2016.7833571. | 
| 29 | MENDIS G J, WEI J, MADANAYAKE A. Deep belief network for automated modulation classification in cognitive radio [C]//2017 Cognitive Communications for Aerospace Applications Workshop (CCAA). IEEE, 2017. DOI: 10.1109/CCAAW.2017.8001609. | 
| 30 | HONG D H, ZHANG Z L, XU X D. Automatic modulation classification using recurrent neural networks [C]//2017 3rd IEEE International Conference on Computer and Communications (ICCC). IEEE, 2017: 695-700. DOI: 10.1109/CompComm.2017.8322633. | 
| 31 | RAJENDRAN S, MEMBER S, MEERT W, et al. IEEE Transactions on Cognitive Communications and Networking, Deep learning models for wireless signal classification with distributed low-cost spectrum sensors. 2018, 4 (3): 433- 445. doi: 10.1109/TCCN.2018.2835460 | 
| 32 | WEST N E, O’HEA T. Deep architectures for modulation recognition [C]//2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2017. DOI: 10.1109/DySPAN.2017.7920754. | 
| 33 | TANG B, TU Y, ZHANG Z, et al. IEEE Access, Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks. 2018, (6): 15713- 15722. doi: 10.1109/ACCESS.2018.2815741 | 
| 34 | LI J, QI L, LIN Y, et al. Research on modulation identification of digital signals based on deep learning [C]//2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT). IEEE, 2016: 402-405. | 
| 35 | DAI A, ZHANG H, SUN H. Automatic modulation classification using stacked sparse auto-encoders [C]//2016 IEEE 13th International Conference on Signal Processing (ICSP). IEEE, 2016: 248-252. | 
| 36 | YU L, CHEN J, DING G R, et al. IEEE Access, Spectrum prediction based on taguchi method in deep learning with long short-term memory. 2018, (6): 45923- 45933. doi: 10.1109/ACCESS.2018.2864222 | 
| 37 | HERNÁNDEZ J, LÓPEZ D, VERA N. Primary user characterization for cognitive radio wireless networks using long short-term memory [J]. International Journal of Distributed Sensor Networks, 2018, 14(11). DOI: 10.1177/1550147718811828. | 
| 38 | ZUO P L, WANG X, LINGHU W D, et al. Prediction-based spectrum access optimization in cognitive radio networks [C]//2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2018. DOI: 10.1109/PIMRC.2018.8580726. | 
| 39 | YU L, CHEN J, DING G R. Spectrum prediction via long short term memory [C]//2017 3rd IEEE International Conference on Computer and Communications, ICCC 2017. IEEE, 2018: 643-647. | 
| 40 | AGARWAL A, DUBEY S, KHAN M A, et al. Learning based primary user activity prediction in cognitive radio networks for efficient dynamic spectrum access [C]//2016 International Conference on Signal Processing and Communications, SPCOM 2016. IEEE, 2016. DOI: 10.1109/SPCOM.2016.7746632. | 
| 41 | SHAWEL B S, WOLDEGEBREAL D H, POLLIN S. Deep-learning based cooperative spectrum prediction for cognitive networks [C]//2018 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2018: 133-137. DOI: 10.1109/ICTC.2018.8539570. | 
| 42 | SHAWEL B S, WOLDEGEBREAL D H, POLLIN S. Convolutional LSTM-based long-term spectrum prediction for dynamic spectrum access [C]// 2019 27th European Signal Processing Conference (EUSIPCO). IEEE, 2019. DOI: 10.23919/EUSIPCO.2019.8902956. | 
| 43 | OMOTERE O, FULLER J, QIAN L J, et al. Spectrum occupancy prediction in coexisting wireless systems using deep learning [C]//2018 IEEE 88th Vehicular Technology Conference (VTC-Fall). IEEE, 2018. DOI: 10.1109/VTCFall.2018.8690575. | 
| 44 | ROY D, MUKHERJEE T, CHATTERJEE M, et al. Primary user activity prediction in DSA networks using recurrent structures [C]//2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2019. DOI: 10.1109/DySPAN.2019.8935716. | 
| 45 | YU L X, WANG Q L, GUO Y F, et al. Spectrum availability prediction in cognitive aerospace communications: A deep learning perspective [C]//2017 Cognitive Communications for Aerospace Applications Workshop (CCAA). IEEE, 2017. DOI: 10.1109/CCAAW.2017.8001877. | 
| 46 | YU L, CHEN J, ZHANG Y, et al. China Communications, Deep spectrum prediction in high frequency communication based on temporal-spectral residual network. 2018, 15 (9): 25- 34. doi: 10.1109/CC.2018.8456449 | 
| 47 | AGARWAL A, GANGOPADHYAY R. Transactions on Emerging Telecommunications Technologies, Predictive spectrum occupancy probability-based spatio-temporal dynamic channel allocation map for future cognitive wireless networks. 2018, 29 (8): e3442. doi: 10.1002/ett.3442 | 
| 48 | TANG Z L, LI S M. KSII Transactions on Internet and Information Systems, Deep recurrent neural network for multiple time slot frequency spectrum predictions of cognitive radio. 2017, 11 (6): 3029- 3045. DOI: 10.3837/tiis.2017.06.013. | 
| 49 | DO V Q, KOO I. Applied Sciences, Learning frameworks for cooperative spectrum sensing and energy-efficient data protection in cognitive radio networks. 2018, 8 (5): 722- 745. doi: 10.3390/app8050722 | 
| 50 | MERCHANT K, REVAY S, STANTCHEV G, et al. IEEE Journal on Selected Topics in Signal Processing, Deep learning for RF device fingerprinting in cognitive communication networks. 2018, 12 (1): 160- 167. doi: 10.1109/JSTSP.2018.2796446 | 
| 51 | LIU H, ZHU X, FUJII T. Adversarial training for low-complexity convolutional neural networks using in spectrum sensing [C]//2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 2019: 478-483. DOI: 10.1109/ICAIIC.2019.8668844. | 
| 52 | HAN D, SOBABE G C, ZHANG C J, et al. Spectrum sensing for cognitive radio based on convolution neural network [C]//2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2017. DOI: 10.1109/CISP-BMEI.2017.8302117. | 
| 53 | LEE W, KIM M, CHO D H. IEEE Transactions on Vehicular Technology, Deep cooperative sensing: Cooperative spectrum sensing based on convolutional neural networks. 2019, 68 (3): 3005- 3009. doi: 10.1109/TVT.2019.2891291 | 
| 54 | LIU C, WANG J, LIU X M, et al. IEEE Journal on Selected Areas in Communications, Deep CM-CNN for spectrum sensing in cognitive radio. 2019, 37 (10): 2306- 2321. doi: 10.1109/JSAC.2019.2933892 | 
| 55 | XIE J D, LIU C, LIANG Y C, et al. IEEE Communications Letters, Activity pattern aware spectrum sensing: A CNN-based deep learning approach. 2019, 23 (6): 1025- 1028. doi: 10.1109/LCOMM.2019.2910176 | 
| 56 | CUI Y H, JING X J, SUN S L, et al. Deep learning based primary user classification in cognitive radios [C]//2015 15th International Symposium on Communications and Information Technologies (ISCIT). IEEE, 2015: 165-168. DOI: 10.1109/ISCIT.2015.7458333. | 
| 57 | SUN X K, GAO L, LUO X D, et al. RBM based cooperative Bayesian compressive spectrum sensing with adaptive threshold [C]//2016 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2016. DOI: 10.1109/ICCChina.2016.7636844 | 
| 58 | TANG Y J, ZHANG Q Y, LIN W. Artificial neural network based spectrum sensing method for cognitive radio [C]//2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM). IEEE, 2010. DOI: 10.1109/WICOM.2010.5601105. | 
| 59 | KE D, HUANG Z T, WANG X, et al. IEEE Access, Blind detection techniques for non-cooperative communication signals based on deep learning. 2019, (7): 89218- 89225. doi: 10.1109/ACCESS.2019.2926296 | 
| 60 | LEE W. IEEE Communications Letters, IEEE, Resource allocation for multi-channel underlay cognitive radio network based on deep neural network. 2018, 22 (9): 1942- 1945. doi: 10.1109/LCOMM.2018.2859392 | 
| 61 | DU Y H, ZHANG F, XUE L. Sensors, A kind of joint routing and resource allocation scheme based on prioritized memories-deep Q network for cognitive radio ad hoc networks. 2018, 18 (7): 2119- 2139. doi: 10.3390/s18072119 | 
| 62 | WANG S, LIU H, GOMES P H, et al. IEEE Transactions on Cognitive Communications and Networking, Deep reinforcement learning for dynamic multichannel access in wireless networks. 2018, 4 (2): 257- 265. doi: 10.1109/TCCN.2018.2809722 | 
| 63 | LAWRENCE S, GILES C L, AH CHUNG TSOI, et al. IEEE Transactions on Neural Networks, Face recognition: A convolutional neural-network approach. 1997, 8 (1): 98- 113. doi: 10.1109/72.554195 | 
| 64 | LECUN Y, FU JIE HUANG, BOTTOU L. Learning methods for generic object recognition with invariance to pose and lighting [C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, CVPR 2004. IEEE, 2004(2): 97-104. | 
| 65 | ABDEL-HAMID O, MOHAMED A, JIANG H, et al. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition [C]//2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2012: 4277-4280. DOI: 10.1109/ICASSP.2012.6288864. | 
| 66 | ABDEL-HAMID O, MOHAMED A, JIANG H, et al. IEEE/ACM Transactions on Audio, Speech, and Language Processing, Convolutional neural networks for speech recognition. 2014, 22 (10): 1533- 1545. doi: 10.1109/TASLP.2014.2339736 | 
| 67 | NIU X X, SUEN C Y. Pattern Recognition, A novel hybrid CNN-SVM classifier for recognizing handwritten digits. 2012, 45 (4): 1318- 1325. doi: 10.1016/j.patcog.2011.09.021 | 
| 68 | LAUER F, SUEN C Y, BLOCH G. Pattern Recognition, A trainable feature extractor for handwritten digit recognition. 2007, 40 (6): 1816- 1824. doi: 10.1016/j.patcog.2006.10.011 | 
| 69 | LECUN Y, BOTTOU L, BENGIO Y, et al. Proceedings of the IEEE, Gradient-based learning applied to document recognition. 1998, 86 (11): 2278- 2324. doi: 10.1109/5.726791 | 
| 70 | HAUSER S C, HEADLEY W C, MICHAELS A J. Signal detection effects on deep neural networks utilizing raw IQ for modulation classification [C]// MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). IEEE, 2017: 121-127. DOI: 10.1109/MILCOM.2017.8170853. | 
| 71 | O’SHEA T J, HOYDIS J. IEEE Transactions on Cognitive Communications and Networking, An introduction to deep learning for the physical layer. 2017, 3 (4): 563- 575. doi: 10.1109/TCCN.2017.2758370 | 
| 72 | SAHAI A, TANDRA R, MISHRA S M, et al. Fundamental design tradeoffs in cognitive radio systems[C]// Proceedings of the 1rst International Workshop on Technology and Policy for Accessing Spectrum. ACM, 2006. DOI: 10.1145/1234388.1234390. | 
| 73 | 郭彩丽, 张天魁, 曾志民, 等. 电信科学, 认知无线电关键技术及应用的研究现状. 2006, (8): 50- 55. doi: 10.3969/j.issn.1000-0801.2006.08.013 | 
| 74 | 曾英, 李志勇, 张春平, 等. 新型协作频谱感知系统检测性能优化策略[J]. 华东师范大学学报(自然科学版), 2016(3): 84-91. | 
| 75 | JIN S, ZHANG X. Compressive spectrum sensing for MIMO-OFDM based cognitive radio networks [C]//2015 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2015: 2197-2202. | 
| 76 | JAFAR A, SRINIVASA S. IEEE Communications Magazine, The throughput potential of cognitive radio. 2007, 45 (5): 73- 79. doi: 10.1109/MCOM.2007.358852 | 
| 77 | SON K, JUNG B C, CHONG S, et al. Power allocation for OFDM-based cognitive radio systems under outage constraints [C]//2010 IEEE International Conference on Communications. IEEE, 2010. DOI: 10.1109/ICC.2010.5501790. | 
| 78 | YE H, LI G Y, JUANG B H. IEEE Wireless Communications Letters, Power of deep learning for channel estimation and signal detection in OFDM systems. 2018, 7 (1): 114- 117. doi: 10.1109/LWC.2017.2757490 | 
| 79 | GALINDO-SERRANO A, GIUPPONI L. IEEE Transactions on Vehicular Technology, Distributed Q-learning for aggregated interference control in cognitive radio networks. 2010, 59 (4): 1823- 1834. doi: 10.1109/TVT.2010.2043124 | 
| 80 | VENKATRAMAN P, HAMDAOUI B, GUIZANI M. IEEE Transactions on Vehicular Technology, Opportunistic bandwidth sharing through reinforcement learning. 2010, 59 (6): 3148- 3153. doi: 10.1109/TVT.2010.2048766 | 
| 81 | LUND J. Reinforcement learning based distributed multiagent sensing policy for cognitive radio networks [C]//2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2011: 642-646. | 
| 82 | WANG Z Y, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning [C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48. JMLR, 2016: 1995-2003. | 
| 83 | 刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1-27. | 
| 84 | VOEGTLIN T, DOMINEY P F. Neural Networks, Linear recursive distributed representations. 2005, 18 (7): 878- 895. doi: 10.1016/j.neunet.2005.01.005 | 
| 85 | LECUN Y, BENGIO Y, HINTON G. Nature, Deep learning. 2015, 521 (7553): 436- 444. doi: 10.1038/nature14539 | 
| 86 | HOCHREITER S, SCHMIDHUBER J. Neural Computation, Long short-term memory. 1997, 9 (8): 1735- 1780. doi: 10.1162/neco.1997.9.8.1735 | 
| 87 | MACKAY D J C. Neural Computation, A practical Bayesian framework for backpropagation networks. 1992, 4 (3): 448- 472. doi: 10.1162/neco.1992.4.3.448 | 
| 88 | UTSUGI A. Neural Computation, Hyperparameter selection for self-organizing maps. 1997, 9 (3): 623- 635. doi: 10.1162/neco.1997.9.3.623 | 
| 89 | GRAHAM B M, ADLER A. Physiological Measurement, Objective selection of hyperparameter for EIT. 2006, 27 (5): S65- S79. doi: 10.1088/0967-3334/27/5/S06 | 
| 90 | CHEN Z, GUO N, HU Z, et al. IEEE Transactions on Vehicular Technology, Experimental validation of channel state prediction considering delays in practical cognitive radio. 2011, 60 (4): 1314- 1325. doi: 10.1109/TVT.2011.2116051 | 
| 91 | LIN Z J, JIANG X Y, HUANG L F, et al. A energy prediction based spectrum sensing approach for cognitive radio networks [C]//2009 5th International Conference on Wireless Communications, Networking and Mobile Computing. IEEE, 2009. DOI: 10.1109/WICOM.2009.5302514. | 
| 92 | CHEN Z. Channel state prediction in cognitive radio [C]// Cognitive Radio and Interference Management Technology and Strategy, 2012(15): 273-288. DOI: 10.4018/978-1-4666-2005-6.ch015. | 
| 93 | WANG L C, WANG C W, CHANG C J. IEEE Transactions on Mobile Computing, Modeling and analysis for spectrum handoffs in cognitive radio networks. 2012, 11 (9): 1499- 1513. doi: 10.1109/TMC.2011.155 | 
| 94 | DING G R, WANG J L, WU Q H, et al. IEEE Communications Magazine, On the limits of predictability in real-world radio spectrum state dynamics: From entropy theory to 5G spectrum sharing. 2015, 53 (7): 178- 183. doi: 10.1109/MCOM.2015.7158283 | 
| 95 | XING X, JING T, CHENG W, et al. IEEE Wireless Communications, Spectrum prediction in cognitive radio networks. 2013, 20 (2): 90- 96. doi: 10.1109/MWC.2013.6507399 | 
| 96 | ELTOM H, KANDEEPAN S, EVANS R J, et al. EURASIP Journal on Wireless Communications and Networking, Statistical spectrum occupancy prediction for dynamic spectrum access: A classification. 2018, (1): 29. doi: 10.1186/s13638-017-1019-8 | 
| 97 | HINTON G E, OSINDERO S, TEH Y W. Neural Computation, A fast learning algorithm for deep belief nets. 2006, 18 (7): 1527- 1554. doi: 10.1162/neco.2006.18.7.1527 | 
| [1] | 黄彩蝶, 王昕萍, 陈良育, 刘勇. 基于堆叠门控循环单元残差网络的知识追踪模型研究[J]. 华东师范大学学报(自然科学版), 2022, 2022(6): 68-78. | 
| [2] | 马依琳, 陶慧玲, 董启文, 王晔. 基于Transformer的多特征融合的航空发动机剩余使用寿命预测[J]. 华东师范大学学报(自然科学版), 2022, 2022(5): 219-232. | 
| [3] | 吴豪杰, 王妍洁, 蔡文炳, 王飞, 刘洋, 蒲鹏, 林绍辉. 基于隐层相关联算子的知识蒸馏方法[J]. 华东师范大学学报(自然科学版), 2022, 2022(5): 115-125. | 
| [4] | 赵晓臻, 童卫青, 刘咏梅. 一种面向服装样板图分类的图卷积神经网络[J]. 华东师范大学学报(自然科学版), 2022, 2022(4): 56-66. | 
| [5] | 李继洲, 林欣. 基于递归结构的神经网络架构搜索算法[J]. 华东师范大学学报(自然科学版), 2022, 2022(4): 31-42. | 
| [6] | 王泽杰, 沈超敏, 赵春, 刘新妹, 陈杰. 融合人体姿态估计和目标检测的学生课堂行为识别[J]. 华东师范大学学报(自然科学版), 2022, 2022(2): 55-66. | 
| [7] | 张旭, 黄定江. 基于深度学习的铝材表面缺陷检测[J]. 华东师范大学学报(自然科学版), 2020, 2020(6): 105-114. | 
| [8] | 韩程程, 李磊, 刘婷婷, 高明. 语义文本相似度计算方法[J]. 华东师范大学学报(自然科学版), 2020, 2020(5): 95-112. | 
| [9] | 贺小娟, 郭新顺. 基于特征优化的广告点击率预测模型研究[J]. 华东师范大学学报(自然科学版), 2020, 2020(4): 147-155. | 
| [10] | 杨康, 黄定江, 高明. 面向自动问答的机器阅读理解综述[J]. 华东师范大学学报(自然科学版), 2019, 2019(5): 36-52. | 
| [11] | 陈远哲, 匡俊, 刘婷婷, 高明, 周傲英. 共指消解技术综述[J]. 华东师范大学学报(自然科学版), 2019, 2019(5): 16-35. | 
| [12] | 刘恒宇, 张天成, 武培文, 于戈. 知识追踪综述[J]. 华东师范大学学报(自然科学版), 2019, 2019(5): 1-15. | 
| [13] | 叶健, 赵慧. 基于大规模弹幕数据监听和情感分类的舆情分析模型[J]. 华东师范大学学报(自然科学版), 2019, 2019(3): 86-100. | 
| [14] | 袁培森, 张勇, 李美玲, 顾兴健. 基于深度哈希学习的商标图像检索研究[J]. 华东师范大学学报(自然科学版), 2018, 2018(5): 172-182. | 
| [15] | 余若男, 黄定江, 董启文. 基于深度学习的场景文字检测研究进展[J]. 华东师范大学学报(自然科学版), 2018, 2018(5): 1-16. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||