1 |
DONOGHUE J F. Is the spin connection confined or condensed?. Physical Review D, 2017, 96 (4): 044003.
|
2 |
DONOGHUE J F. Conformal model of gravitons. Physical Review D, 2017, 96 (4): 044006.
|
3 |
DONOGHUE J F. Quartic propagators, negative norms, and the physical spectrum. Physical Review D, 2017, 96 (4): 044007.
|
4 |
KOSTELECKÝ V A, SAMUEL S. Spontaneous breaking of Lorentz symmetry in string theory. Physical Review D, 1989, 39 (2): 683- 685.
|
5 |
CARROLL S M, HARVEY J A, KOSTELECKÝ V A, et al. Noncommutative field theory and Lorentz violation. Physical Review Letters, 2001, 87 (14): 141601.
|
6 |
ALFARO J, MORALES-TÉCOTL H A, REYES M, et al, Alternative approaches to Lorentz violation invariance in loop quantum gravity inspired models [J]. Physical Review D, 2004, 70(8): 084002.
|
7 |
SHEN J Y, XUE X. Large scale Lorentz violation gravity and dark energy [C]// Lepton Photon Interactions at High Energies , Lepton Photon 2017, Proceedings of the 28th International Symposium on Lepton Photon Interactions at High Energies (LP17). Singapore: World Scientific Publishing Co Pte Ltd, 2020: 459-475.
|
8 |
WU Y W, XUE X, YANG L X, et al. The effective gravitational theory at large scale with Lorentz violation [EB/OL]. (2015-10-18)[2022-03-02]. https://arxiv.org/abs/1510.00814.
|
9 |
吴奕暐, 薛 迅. SIM(2)引力规范理论. 华东师范大学(自然科学版), 2016, (3): 76- 83.
|
10 |
YANG L X, WU Y W, WEI W Y, et al. The effective gravitation theory at large scale with Lorentz violation. Chinese Science Bulletin, 2017, 62 (9): 944- 950.
|
11 |
魏文叶, 申佳音, 吴奕暐, 等. 大尺度有效引力的E(2)规范理论模型 . 物理学报, 2017, 66 (13): 130301.
|
12 |
翟韩豫, 申佳音, 薛迅. 源自弦景观的有效Quintessence. 物理学报, 2019, 68 (13): 139501.
|
13 |
ZHAI H Y, SHEN J Y, XUE X, Uplifting of AdS type to quintessence-like potential induced by frozen large-scale Lorentz violation [J]. Chinese Physics C, 2020, 44(8): 085101,
|
14 |
LI Q, LI J, ZHOU Y X, et al. The effective potential originating from Swampland and the non-trivial Brans-Dicke coupling. Chinese Physics C, 2020, 44 (10): 105108.
|
15 |
LI J, ZHOU Y X, XUE X. Spatial curvature and large scale Lorentz violation. Chinese Physics C, 2022, 46 (6): 065101.
|
16 |
SHAPIRO I L. Physical aspects of the space-time torsion. Physics Reports, 2002, 357 (2): 113- 213.
|
17 |
HAMMOND R T. Torsion gravity. Reports on Progress in Physics, 2002, 65 (5): 599- 649.
|
18 |
TRUKHANOVA M. The geometro-hydrodynamical formalism of the quantum spinning particle. Progress of Theoretical and Experimental Physics, 2018, (12): 123A01.
|
19 |
TRUKHANOVA M I. The geometro-hydrodynamical representation of the torsion field. Physics Letters A, 2017, 381 (35): 2887- 2892.
|
20 |
HONGO M, HUANG X G, KAMINSKI M. Relativistic spin hydrodynamics with torsion and linear response theory for spin relaxation [J/OL]. Journal of High Energy Physics, 2021: 150. (2021-11-19)[2022-03-02]. https://doi.org/10.1007/JHEP11(2021)150.
|
21 |
TRUKHANOVA M I, OBUKHOV Y N. Quantum hydrodynamics of spinning particles in electromagnetic and torsion fields [J/OL]. Universe, 2021, 7(12): 498. (2021-12-15)[2022-03-02]. https://doi.org/10.3390/universe7120498.
|
22 |
TSAMPARLIS M. Cosmological principle and torsion. Physics Letters A, 1979, 75 (1/2): 27- 28.
|
23 |
NICACIO F, FALCIANO F T. Mean value of the quantum potential and uncertainty relations. Physical Review A, 2020, 101 (5): 052105.
|
24 |
MISNER C W, THORNE K S, WHEELER J A. Gravitation [M]. Princeton, New Jersey: Princeton University Press, 1973.
|
25 |
ALDROVANDI R, PEREIRA J G. Teleparallel Gravity [M]. Dordrecht Netherlands: Springer, 2013.
|