 
  中国综合性科技类核心期刊(北大核心)
中国综合性科技类核心期刊(北大核心)Journal of East China Normal University(Natural Science) ›› 2024, Vol. 2024 ›› Issue (2): 108-118.doi: 10.3969/j.issn.1000-5641.2024.02.012
• Computer Science • Previous Articles Next Articles
					
													Zhihong ZHENG, Haichuan SONG*( )
)
												  
						
						
						
					
				
Received:2023-02-01
															
							
															
							
															
							
																	Online:2024-03-25
															
							
																	Published:2024-03-18
															
						Contact:
								Haichuan SONG   
																	E-mail:hcsong@cs.ecnu.edu.cn
																					CLC Number:
Zhihong ZHENG, Haichuan SONG. Group contrastive learning for weakly-supervised 3D point cloud semantic segmentation[J]. Journal of East China Normal University(Natural Science), 2024, 2024(2): 108-118.
 
													
													Table 1
Main result on S3DIS"
| 全/弱监督 | 方法 | 标签量 | mIoU/% | 
| 全监督 | PointNet[ | ||
| SPH3D[ | |||
| PointConv[ | |||
| KPConv[ | |||
| RandLA-Net[ | |||
| 弱监督 | Xu等[ | ||
| GPCL[ | |||
| SSPC-Net[ | |||
| Zhang等[ | |||
| Zhang等[ | |||
| PSD[ | |||
| PSD[ | |||
| HybridCR[ | |||
| 本文方法 | |||
| 本文方法 | |||
| 本文方法 | 
 
													
													Table 2
Main result on ScanNet-V2"
| 全/弱监督 | 方法 | 标签量 | mIoU/% | 
| 全监督 | PointConv[ | ||
| SPH3D[ | |||
| KPConv[ | |||
| RandLA-Net[ | |||
| 弱监督 | MPRM[ | ||
| GPCL[ | |||
| WyPR[ | |||
| SSPC-Net[ | |||
| Zhang等[ | |||
| PSD[ | |||
| HybridCR[ | |||
| 本文方法 | |||
| 本文方法 | |||
| 本文方法 | 
 
													
													Table 3
Main result on Semantic3D"
| 全/弱监督 | 方法 | 标签量 | mIoU/% | 
| 全监督 | KPConv[ | ||
| RandLA-Net[ | |||
| 弱监督 | Zhang等[ | ||
| PSD[ | |||
| HybridCR[ | |||
| 本文方法 | |||
| 本文方法 | |||
| 本文方法 | 
| 1 | ARMENI I, SENER O, ZAMIR A R, et al. 3D semantic parsing of large-scale indoor spaces [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 1534-1543. | 
| 2 | DAI A, CHANG A X, SAVVA M, et al. ScanNet: Richly-annotated 3D reconstructions of indoor scenes [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 5828-5839. | 
| 3 | BEHLEY J, GARBADE M, MILIOTO A, et al. SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 9297-9307. | 
| 4 | 李勇, 佟国峰, 杨景超, 等.. 三维点云场景数据获取及其场景理解关键技术综述. 激光与光电子学进展, 2019, 56 (4): 21- 34. | 
| 5 | LI M, XIE Y, SHEN Y, et al. HybridCR: Weakly-supervised 3D point cloud semantic segmentation via hybrid contrastive regularization [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 14930-14939. | 
| 6 | XU X, LEE G H. Weakly supervised semantic point cloud segmentation: Towards 10 × fewer labels [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 13706-13715. | 
| 7 | ZHANG Y, QU Y, XIE Y, et al. Perturbed self-distillation: Weakly supervised large-scale point cloud semantic segmentation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 15520-15528. | 
| 8 | CHENG M, HUI L, XIE J, et al. SSPC-Net: Semi-supervised semantic 3D point cloud segmentation network [C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2021: 1140-1147. | 
| 9 | LIU Z, QI X, FU C W. One thing one click: A self-training approach for weakly supervised 3D semantic segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 1726-1736. | 
| 10 | ZHANG Y, LI Z, XIE Y, et al. Weakly supervised semantic segmentation for large-scale point cloud [C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2021: 3421-3429. | 
| 11 | HOU J, GRAHAM B, NIEßNER M, et al. Exploring data-efficient 3D scene understanding with contrastive scene contexts [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 15587-15597. | 
| 12 | XIE S, GU J, GUO D, et al. PointContrast: Unsupervised pre-training for 3D point cloud understanding [C]// Computer Vision–ECCV 2020: 16th European Conference. 2020: 574-591. | 
| 13 | HACKEL T, SAVINOV N, LADICKY L, et al. Semantic3D.net: A new large-scale point cloud classification benchmark [EB/OL]. (2017-04-12)[2023-01-12]. https://arxiv.org/pdf/1704.03847.pdf. | 
| 14 | 张佳颖, 赵晓丽, 陈正.. 基于深度学习的点云语义分割综述. 激光与光电子学进展, 2020, 57 (4): 28- 46. | 
| 15 | GUO Y, WANG H, HU Q, et al.. Deep learning for 3D point clouds: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43 (12): 4338- 4364. | 
| 16 | AUDEBERT N, LE SAUX B, LEFÈVRE S. Semantic segmentation of earth observation data using multimodal and multi-scale deep networks [C]// Computer Vision–ACCV 2016: 13th Asian Conference on Computer Vision. 2017: 180-196. | 
| 17 | TCHAPMI L, CHOY C, ARMENI I, et al. SEGCloud: Semantic segmentation of 3D point clouds [C]// 2017 International Conference on 3D Vision. 2017: 537-547. | 
| 18 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 3431-3440. | 
| 19 | RETHAGE D, WALD J, STURM J, et al. Fully-convolutional point networks for large-scale point clouds [C]// Proceedings of the European Conference on Computer Vision. 2018: 596-611. | 
| 20 | QI C R, SU H, MO K, et al. PointNet: Deep learning on point sets for 3D classification and segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 652-660. | 
| 21 | QI C R, YI L, SU H, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 5105-5114. | 
| 22 | JIANG M Y, WU Y R, ZHAO T Q, et al. PointSIFT: A sift-like network module for 3D point cloud semantic segmentation [EB/OL]. (2018-11-24)[2023-01-10]. https://arxiv.org/pdf/1807.00652.pdf. | 
| 23 | HU Q, YANG B, XIE L, et al. RandLA-Net: Efficient semantic segmentation of large-scale point clouds [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 11108-11117. | 
| 24 | YANG J, ZHANG Q, NI B, et al. Modeling point clouds with self-attention and gumbel subset sampling [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 3323-3332. | 
| 25 | THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: Flexible and deformable convolution for point clouds [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 6411-6420. | 
| 26 | LI Y, BU R, SUN M, et al. PointCNN: Convolution on $ \chi $-transformed points [EB/OL]. (2018-11-05)[2023-01-09]. https://arxiv.org/pdf/1801.07791.pdf. | 
| 27 | WU B, WAN A, YUE X, et al. SqueezeSeg: Convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud [C]// 2018 IEEE International Conference on Robotics and Automation. 2018: 1887-1893. | 
| 28 | WU B, ZHOU X, ZHAO S, et al. SqueezeSegV2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud [C]// 2019 International Conference on Robotics and Automation. 2019: 4376-4382. | 
| 29 | MENG H Y, GAO L, LAI Y K, et al. VV-Net: Voxel VAE net with group convolutions for point cloud segmentation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 8500-8508. | 
| 30 | WEI J, LIN G, YAP K H, et al. Multi-path region mining for weakly supervised 3D semantic segmentation on point clouds [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 4384-4393. | 
| 31 | WANG H Y, RONG X J, YANG L , et al. Towards Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point Clouds of Wild Scenes [C]// 30th British Machine Vision Conference 2019 , BMVC. 2019: 284. | 
| 32 | JIANG L, SHI S, TIAN Z, et al. Guided point contrastive learning for semi-supervised point cloud semantic segmentation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 6423-6432. | 
| 33 | WANG X, GAO J, LONG M, et al. Self-tuning for data-efficient deep learning [C]// Proceedings of the International Conference on Machine Learning. 2021: 10738-10748. | 
| 34 | LEI H, AKHTAR N, MIAN A.. Spherical kernel for efficient graph convolution on 3D point clouds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43 (10): 3664- 3680. | 
| 35 | WU W, QI Z, LI F X. PointConv: Deep convolutional networks on 3D point clouds [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 9621-9630. | 
| 36 | REN Z, MISRA I, SCHWING A G, et al. 3D spatial recognition without spatially labeled 3D [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 13204-13213. | 
| [1] | Junlin REN, Huan WANG, Xiaodi HUANG, Yanting LI, Shenggen JU. Sequence-aware and multi-type behavioral data driven knowledge concept recommendation for massive open online courses [J]. Journal of East China Normal University(Natural Science), 2024, 2024(5): 45-56. | 
| [2] | Chang WANG, Dan MA, Huarong XU, Panfeng CHEN, Mei CHEN, Hui LI. SA-MGKT: Multi-graph knowledge tracing method based on self-attention [J]. Journal of East China Normal University(Natural Science), 2024, 2024(5): 20-31. | 
| [3] | Xin LU, Chang HUANG, Zhiwei JIN. Multi-view and multi-pose lock pin point cloud model reconstruction based on turntable [J]. Journal of East China Normal University(Natural Science), 2024, 2024(2): 86-96. | 
| [4] | Zhiwei JIN, Chang HUANG, Ruihong ZHU. Fast establishment of a point cloud model for a lock pin based onhigh overlapping views [J]. Journal of East China Normal University(Natural Science), 2023, 2023(2): 95-105. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||