WANG Chen-Ying. New transformation for the partial sum of a cubic q-series[J]. Journal of East China Normal University(Natural Sc, 2015, 2015(6): 46-52.
[1]CHU W, WANG C. Abel's lemma on summation by parts and partialq-series transformations [J]. Science in China Ser A, 2009, 52(4):720-748.[2] GASPER G, RAHMAN M.Basic Hypergeometric Series [M]. Cambridge: Cambridge University Press, 2004.[3] SLATER L J.Generalized Hypergeometric Functions [M]. Cambridge: CambridgeUniversity Press, 1966.[4] CHU W.Inversion techniques and combinatorial identities [J]. Bollettino UM I, 1993(7): 737-760.[5] CHU W.Inversion techniques and combinatorial identities: Jackson's $q$-analogue of the Dougall-Dixon theorem and the dual formulae [J].Compositio Mathematica, 1995, 95(1): 43-68.[6] GASPER G.Summation, transformation, and expansion formulas for bibasic series[J]. Trans Amer Math Soc, 1989, 312(1): 257-277.[7] GASPER G, RAHMAN M.An indefinite bibasic summation formula and some quadratic, cubic and quartic summation and transformation formulas [J].Can J Math 1990, 42: 1-27.