[1] YUAN J, ZHENG Y, XIE X. Discovering regions of different functions in a city using human mobility and pois[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2012: 186-194. [2] YUAN N J, ZHENG Y, XIE X, et al. Discovering urban functional zones using latent activity trajectories[J]. IEEE Transactions on Knowledge & Data Engineering, 2015, 27(3): 712-725. [3] QI G, LI X, LI S, et al. Measuring social functions of city regions from large-scale taxi behaviors[C]//IEEE International Conference on Pervasive Computing and Communications Workshops. IEEE, 2011: 384-388. [4] GODDARD J B. Functional regions within the city centre: A study by factor analysis of taxi flows in central London[J]. Transactions of the Institute of British Geographers, 1970, 49(49): 161-182. [5] VATSAVAI R R, BRIGHT E, VARUN C, et al. Machine learning approaches for high-resolution urban land cover classification: A comparative study[C]//Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications. ACM, 2011: Article No 11. [6] ANTIKAINEN J. The concept of functional urban area(Findings on the ESPON project 1.1.1)[J]. Informationen Zur Raumentwicklung, 2005, 7: 447-456. [7] KARLSSON C. Clusters, functional regions and cluster policies[R/OL]. JIBS CESIS Electron, Working Paper Ser (84). [2016-06-01]. https://www.researchgate.net/publication/5094404. [8] BIRANT D, KUT A. ST-DBSCAN: An algorithm for clustering spatial–temporal data[J]. Data & Knowledge Engineering, 2007, 60(1): 208-221. [9] CHEN X C, FAGHMOUS J H, KHANDELWAL A. Clustering dynamic spatio-temporal patterns in the presence of noise and missing data[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015). 2015: 2575-2581. [10] BIRANT D, KUT A. ST-DBSCAN: An algorithm for clustering spatial-temporal data[J]. Data & Knowledge Engineering, 2007, 60(1): 208-221. [11] SLINK S R. An optimally efficient algorithm for the single-link cluster method[J]. The Computer Journal, 1973, 16(1): 30-34. [12] ZHANG M L, ZHOU Z H. ML-kNN: A lazy learning approach to multi-label learning[J]. Pattern recognition, 2007, 40(7): 2038-2048. [13] ZHANG H, BERG A C, MAIRE M, et al. SVM-KNN: Discriminative nearest neighbor classification for visual category recognition[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2006: 2126-2136. [14] LI L, WEINBERG C R, DARDEN T A. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/kNN method[J]. Bioinformatics, 2001, 17(12): 1131-1142. [15] 李秀娟. kNN分类算法研究[J].科技信息, 2009, 31: 81+383. [16] WBITE T. O'Reilly: Hadoop权威指南[M]. 周敏奇, 王晓玲, 金澈清, 等, 译. 第2版. 北京: 清华大学出版社, 2011. [17] 章志刚, 金澈清, 王晓玲, 等. 面向海量低质手机轨迹数据的重要位置发现[J]. 软件学报, 2016,7: 1700-1714. [18] 吴松, 雒江涛, 周云峰, 等. 基于移动网络信令数据的实时人流量统计方法[J]. 计算机应用研究, 2014(3): 776-779. [19] 沈泽, 吴松, 杨勇, 等. 移动通信网信令处理平台的实时人流量统计方法[J]. 广东通信技术, 2013, 8: 56-60. [20] 肖江, 丁亮, 束鑫, 等. 一种基于计算机视觉的行人流量统计方法[J]. 信息技术, 2015, 8: 22-25. |