[1] BIRNBAUM M. Semiconductor surface damage produced by Ruby lasers[J]. J Appl Phys, 1965, 36(11):3688-3689.
[2] VOROBYEV A Y, GUO C L. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews, 2013, 7(3):385-407.
[3] BAO Z J, WANG C W, ZHANG Y, et al. Modification of wettability of stainless steel by picosecond laser surface microstructuring[J] Photonics Research, 2015, 3(4):180-183.
[4] 王浩竹, 杨丰赫, 杨帆, 等. 飞秒激光在金属钼表面诱导产生纳米量级周期条纹结构的研究 [J]. 中国激光, 2015, 42(1):99-105.
[5] EMMONY D C, HOWSON R P, WILLIS L J. Laser mirror damage in germanium at 10.6 um[J]. Appl Phys Lett, 1973, 23:598-600.
[6] SIPE J E, YOUNG J F, PRESTON J S, et al. Laser-induced periodic surface structure I Theory[J]. Phys Rev B, 1983, 27(2):1141-1154.
[7] SHIMOTSUMA Y, KAZANSKY P, QIU J R, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Phys Rev Lett, 2003, 91(24):247405. DOI:10.1103/phsRevLett.91.247405.
[8] BOROWIEC A, HAUGEN H K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J]. Appl Phys Lett, 2003, 82(25):4462-4464.
[9] MIYAJI G, MIYAZAKI K. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses[J]. Opt Express, 2008, 16:16265-16271.
[10] JIA X, JIA T Q, DING L E, et al. Complex periodic micro/nanostructures on 6 H-SiC crystal induced by the interference of three femtosecond laser beams[J]. Opt Lett, 2009, 34(6):788-790.
[11] MIYAJI G, MIYAZAKI K, ZHANG K F, et al. Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water[J]. Opt Express, 2012, 20:14848-14856.
[12] HUANG M, ZHAO F L, CHENG Y, et al. Origin of laser-induced near subwavelength ripples:Interference between surface plasmons and incident Laser[J]. ACS Nano, 2009, 12(3):4062-4070.
[13] BONSE J, KRUGER J. Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon[J]. J Appl Phys, 2010, 108(3):034903. DOI:10.1063/1.3456501.
[14] BONSE J, ROSENFELD A, KRUGER J. On the role of surface plasmon polaritons in the formation of laserinduced periodic surface structures upon irradiation of silicon by femtosecond laser pulses[J]. J Appl Phys, 2009, 106(10):104910. DOI:10.1063/1.3261734.
[15] DUFFT D, ROSENFELD A, DAS S K, et al. Femtosecond laser-induced periodic surface structures revisited:A comparative study on ZnO[J]. J Appl Phys, 2009, 105:034908. DOI:10.1063/1.3074106.
[16] HWANG T Y, VOROBYEV A Y, GUO C L. Ultrafast dynamics of femtosecond laser-induced nanostructure formation on metals[J]. Appl Phys Lett, 2009, 95:123111. DOI:10.1063/1.3222937.
[17] WANG J C, GUO C L. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals[J]. Appl Phys Lett, 2005, 87:251914. DOI:10.1063/1.2146067.
[18] WANG J C, GUO C L.Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals[J]. J Appl Phys, 2007, 102(5):053522. DOI:10.1063/1.2776004.
[19] DOWNER M C, FORK R L, SHANK C V. Femtosecond imaging of melting and evaporation at a photoexcited silicon surface[J]. J Opt Soc Am B, 1985(2):595-599.
[20] HOHM S, ROSENFELD A, KRUGER J, et al. Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica[J]. Appl Phys Lett, 2013, 102(5):054102. DOI:10.1063/1.4790284.
[21] MURPHY R D, TORRALVA B, ADAMS D P, et al. Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si[J]. Appl Phys Lett, 2013, 103(14):141104. DOI:10.1063/1.4823588.
[22] JIA X, JIA T Q, PENG N N, et al. Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging[J]. J Appl Phys, 2014, 115(14):143102. DOI:10.1063/1.4870445.
[23] JIA X, YUAN Y H, YANG D Q, et al. Ultrafast time-resolved imaging of femtosecond laser-induced periodic surface structures on GaAs[J]. Chinese Optics Letters, 2014, 12(11):113203. DOI:10.3788/COL201412.113203.
[24] 王振林. 表面等离激元研究新进展 [J], 物理学进展, 2009, 29(3):287-324. |