[1] MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon:toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Front Ecol Environ, 2011, 9(10):552-560.
[2] 高宇, 刘鉴毅, 张婷婷, 等. 滨海河口湿地生态系统对全球气候变化的影响[J]. 环境与可持续发展, 2016(4):16-19., 2016(4):16-19.
[3] FAGHERAZZI S, WIBERG P L, TEMMERMAN S, et al. Fluxes of water, sediments, and biogeochemical compounds in salt marshes[J]. Ecological Processes, 2013, 2(1):1-16.
[4] CHMURA G L, ANISFELD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochem Cy, 2003, 17(4):22.
[5] DUARTE C M, MIDDELBURG J J, CARACO N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2005, 2(1):1-8.
[6] MIDDELBURG J J, NIEUWENHUIZE J, LUBBERTS R K, et al. Organic carbon isotope systematics of coastal marshes[J]. Estuar Coast Shelf S, 1997, 45(5):681-687.
[7] SHARITZ R R, PENNINGS S C. Development of wetland plant communities[M]//BATZER D. Ecology of Freshwater and Estuarine Wetlands. CA:University of California Press, 2006:177-241.
[8] BAUER J E, CAI W J, RAYMOND P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478):61-70.
[9] YAN Y, ZHAO B, CHEN J, et al. Closing the carbon budget of estuarine wetlands with tower-based measurements and MODIS time series[J]. Global Change Biol, 2008, 14(7):1690-1702.
[10] 曹磊, 宋金明, 李学刚, 等. 滨海盐沼湿地有机碳的沉积与埋藏研究进展[J]. 应用生态学报, 2013, 24(7):2040-2048., 2013, 24(7):2040-2048.
[11] TAYLOR D I, ALLANSON B R. Organic carbon fluxes between a high marsh and estuary, and the inapplicability of the outwelling hypothesis[J]. Mar Ecol-Prog Ser, 1995, 120(1/2/3):263-270.
[12] ALONGI D M. Coastal Ecosystem Processes[M]. OH:CRC Press, 1998.
[13] OSBURN C L, MIKAN M P, ETHERIDGE J R, et al. Seasonal variation in the quality of dissolved and particulate organic matter exchanged between a salt marsh and its adjacent estuary[J]. J Geophys Res-Biogeo, 2015, 120(7):1430-1449.
[14] ODUM E P. Tidal marshes as outwelling/pulsing systems[M]//WEINSTEIN M P, KREEGER D A. Concepts and Controversies in Tidal Marsh Ecology. New York:Kluwer Academic Publishers, 2002:3-7.
[15] 关道明. 中国滨海湿地[M]. 北京:海洋出版社, 2012.
[16] 周云轩, 谢一民. 上海市湿地资源调查与监测评估体系研究[M]. 上海:上海科学技术出版社, 2012.
[17] GUO H, NOORMETS A, ZHAO B, et al. Tidal effects on net ecosystem exchange of carbon in an estuarine wetland[J]. Agr Forest Meteorol, 2009, 149(11):1820-1828.
[18] ZHANG T, CHEN H, CAO H, et al. Combined influence of sedimentation and vegetation on the soil carbon stocks of a coastal wetland in the Changjiang estuary[J]. Chin J Oceanol Limnol, 2017, 35(4):833-843.
[19] TZORTZIOU M, NEALE P J, MEGONIGAL J P, et al. Spatial gradients in dissolved carbon due to tidal marsh outwelling into a Chesapeake Bay estuary[J]. Mar Ecol-Prog Ser, 2011, 426:41-56.
[20] HOWES B L, GOEHRINGER D D. Porewater drainage and dissolved organic carbon and nutrient losses through the intertidal creekbanks of a New England salt marsh[J]. Marine Ecology Progress Series, 1994:289-301.
[21] QUALLS R G, RICHARDSON C J. Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida[J]. Biogeochemistry, 2003, 62(2):197-229.
[22] KALBITZ K, SOLINGER S, PARK J H, et al. Controls on the dynamics of dissolved organic matter in soils:A review[J]. Soil Sci, 2000, 165(4):277-304.
[23] MORAN M A, SHELDON W M, SHELDON J E. Biodegradation of riverine dissolved organic carbon in five estuaries of the southeastern United States[J]. Estuar Coast, 1999, 22(1):55-64.
[24] DAVIS S E, CHILDERS D L, NOE G B. The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetation[J]. Hydrobiologia, 2006, 569(1):87-97.
[25] VILLA J A, MITSCH W J, SONG K, et al. Contribution of different wetland plant species to the DOC exported from a mesocosm experiment in the Florida Everglades[J]. Ecol Eng, 2014, 71:118-125.
[26] MUDD S M, HOWELL S M, MORRIS J T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation[J]. Estuar Coast Shelf S, 2009, 82(3):377-389.
[27] ABRIL G, NOGUEIRA M, ETCHEBER H, et al. Behaviour of organic carbon in nine contrasting European estuaries[J]. Estuar Coast Shelf S, 2002, 54(2):241-262.
[28] BOUILLON S, MIDDELBURG J J, DEHAIRS F, et al. Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania)[J]. Biogeosciences, 2007, 4(1):317-348.
[29] LI H, YANG S L. Trapping effect of tidal marsh vegetation on suspended sediment, Yangtze Delta[J]. J Coastal Res, 2009, 25(4):915-924.
[30] GE Z M, WANG H, CAO H B, et al. Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes[J/OL]. Sci Rep, 2016, 6.[2017-10-30]. https://www.researchgate.net/publication/304375047.DOI:10.1038/srep28466.
[31] DEEGAN L A, JOHNSON D S, WARREN R S, et al. Coastal eutrophication as a driver of salt marsh loss[J]. Nature, 2012, 490(7420):388-392. |