Journal of East China Normal University(Natural Science) ›› 2022, Vol. 2022 ›› Issue (2): 84-92.doi: 10.3969/j.issn.1000-5641.2022.02.010
• Physics and Electronics • Previous Articles Next Articles
Received:
2020-12-17
Online:
2022-03-25
Published:
2022-03-28
Contact:
Wenhui XIE
E-mail:whxie@phy.ecnu.edu.cn
CLC Number:
Yaqiong ZHANG, Wenhui XIE. First-principles calculations investigations of two-dimensional transition metal phosphide MnTn+1(M = V, Cr; T = P, As, and Sb) slices[J]. Journal of East China Normal University(Natural Science), 2022, 2022(2): 84-92.
Table 1
Lattice parameters a, interlayer distance c, bond lengths, and bond angles for the stable 2DMnTn+1 slices"
材料 | 晶格常数(M-M) | 键长(M-T) | 键角(M-T-M) | |||||||||
a/? | c/? | (c1/c2)/? | r1/? | r2/? | r3/? | r4/? | α/(°) | β/(°) | γ/(°) | |||
V4As5 | 3.146 | 3.412/3.410 | 2.583 | 2.481 | 2.502 | 2.491 | 75.035 | 86.394 | 137.244 | |||
Cr2P3 | 2.889 | 3.178 | 2.374 | 2.304 | 74.932 | 87.228 | 137.554 | |||||
Cr3P4 | 2.951 | 3.101 | 2.387 | 2.296 | 2.311 | 76.380 | 84.599 | 136.590 | ||||
Cr4P5 | 2.984 | 3.078/3.063 | 2.392 | 2.298 | 2.320 | 2.305 | 77.174 | 83.505 | 136.193 | |||
Cr2As3 | 3.063 | 3.388 | 2.502 | 2.450 | 74.051 | 87.465 | 138.236 | |||||
Cr3As4 | 3.107 | 3.333 | 2.506 | 2.441 | 2.457 | 78.724 | 85.755 | 137.462 |
Table 2
Formation energies of 2D MnTn+1 (M = V, Cr; T = P, As, and Sb) with n = 2, 3, 4"
材料 | 形成能/eV | 材料 | 形成能/eV | 材料 | 形成能/eV | ||
V2P3 | –0.31328 | V3P4 | –0.44040 | V4P5 | –0.51718 | ||
V2As3 | –0.20190 | V3As4 | –0.25963 | V4As5 | –0.29527 | ||
V2Sb3 | 0.11433 | V3Sb4 | 0.10519 | V4Sb5 | 0.09757 | ||
Cr2P3 | –0.19112 | Cr3P4 | –0.26576 | Cr4P5 | –0.31131 | ||
Cr2As3 | –0.01199 | Cr3As4 | –0.02067 | Cr4As5 | –0.04511 | ||
Cr2Sb3 | 0.25201 | Cr3Sb4 | 0.20749 | Cr4Sb5 | 0.16456 |
Table 3
Calculated average valence and d electron occupation of the transition metal"
材料 | 价态 | d电子 占据 | 泛函 | 磁性 | 电子性质 | 外层电荷 | 内层电荷 | 外层磁矩 | 内层磁矩 | 交换积分 | ||
J1SiS j | J2SiSj | J3SiS j | ||||||||||
V4As5 | 15/4 | ↑↑ | GGA | NM | M | 4.630 | 4.715 | 0 | 0 | |||
GGA + U | AFM-2 | M | 4.612 | 4.689 | 2.106 | 1.845 | –0.0280 | 0.0223 | –0.0030 | |||
Cr2P3 | 9/2 | ↑↑ | GGA | NM | M | 5.836 | 0 | 0 | ||||
GGA + U | AFM-1 | M | 5.589 | 2.763 | 0.0686 | –0.0716 | –0.0058 | |||||
Cr3P4 | 4 | ↑↑ | GGA | NM | M | 5.793 | 5.894 | 0 | 0 | |||
GGA + U | AFM-1 | M | 5.605 | 5.511 | 2.689 | 3.091 | 0.0546 | –0.0632 | –0.0047 | |||
Cr4P5 | 15/4 | ↑↑↑ | GGA | NM | M | 5.759 | 5.871 | 0 | 0 | |||
GGA + U | AFM-1 | M | 5.609 | 5.506 | 2.707 | 3.038 | 0.0445 | –0.0610 | –0.003 | |||
Cr2As3 | 9/2 | ↑↑ | GGA | AFM-2 | M | 5.490 | 1.134 | |||||
GGA + U | AFM-1 | M | 5.366 | 3.132 | 0.0530 | –0.1088 | –0.0155 | |||||
Cr3As4 | 4 | ↑↑ | GGA | AFM-2 | M | 5.468 | 5.536 | 1.089 | 1.065 | |||
GGA + U | AFM-1 | M | 5.367 | 5.300 | 3.059 | 3.461 | 0.0434 | –0.0772 | –0.0149 |
1 |
GONG C, LI L, LI Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546 (7657): 265- 269.
doi: 10.1038/nature22060 |
2 |
HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546 (7657): 270- 273.
doi: 10.1038/nature22391 |
3 |
O’HARA D. J, ZHU T C, TROUT A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Letters, 2018, 18 (5): 3125- 3131.
doi: 10.1021/acs.nanolett.8b00683 |
4 |
BONILLA M, KOLEKAR S, MA Y J, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates . Nature Nanotechnol., 2018, 13 (4): 289- 293.
doi: 10.1038/s41565-018-0063-9 |
5 |
LI J, ZHAO B, CHEN P, et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates . Advanced Materials, 2018, 30 (36): 1801043.
doi: 10.1002/adma.201801043 |
6 |
SUN X, LI W Y, WANG X, et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Research, 2020, 13 (12): 3358- 3363.
doi: 10.1007/s12274-020-3021-4 |
7 |
HUANG B, CLARK G, KLEIN D R, et al. Electrical control of 2D magnetism in bilayer CrI3. Nature Nanotechnology, 2018, 13 (7): 544- 548.
doi: 10.1038/s41565-018-0121-3 |
8 |
JIANG S, LI L Z, WANG Z F, et al. Controlling magnetism in 2D CrI3 by electrostatic doping . Nature Nanotechnology, 2018, 13 (7): 549- 553.
doi: 10.1038/s41565-018-0135-x |
9 |
LIU H, WANG X S, WU J X, et al. Vapor deposition of magnetic van der Waals NiI2 crystals . ACS Nano, 2020, 14 (8): 10544- 10551.
doi: 10.1021/acsnano.0c04499 |
10 | LIU Y, WANG W, LU H Y, et al. The environmental stability characterization of exfoliated few-layer CrXTe3 (X=Si, Ge) nanosheets . Applied Surface Science, 2020, (511): 145452. |
11 |
DENG Y, YU Y J, SONG Y C, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563 (7729): 94- 99.
doi: 10.1038/s41586-018-0626-9 |
12 |
KHAZAEI M, ARAI M, SASAKI T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 2013, 23 (17): 2185- 2192.
doi: 10.1002/adfm.201202502 |
13 |
KUMAR H, FREY N C, DONG L, et al. Tunable magnetism and transport properties in nitride MXenes. ACS Nano, 2017, 11 (8): 7648- 7655.
doi: 10.1021/acsnano.7b02578 |
14 |
HU Y, LIU X Y, SHEN Z H, et al. High Curie temperature and carrier mobility of novel Fe, Co and Ni carbide MXenes. Nanoscale, 2020, 12 (21): 11627- 11637.
doi: 10.1039/C9NR10927G |
15 |
WANG B, ZHANG Y H, MA L, et al. MnX (X = P, As) monolayers a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy . Nanoscale, 2019, 11 (10): 4204- 4209.
doi: 10.1039/C8NR09734H |
16 |
MOGULKOC A, MODARRESI M, RUDENKO A N. Two-dimensional chromium pnictides CrX(X= P, As, Sb): Half-metallic ferromagnets with high Curie temperature . Physical Review B, 2020, 102 (2): 024441.
doi: 10.1103/PhysRevB.102.024441 |
17 |
WU Q, ZHANG Y H, ZHOU Q H, et al. Transition-metal dihydride monolayers: A new family of two-dimensional ferromagnetic materials with intrinsic room-temperature half-metallicity. Journal of Physical Chemistry Letters, 2018, 9 (15): 4260- 4266.
doi: 10.1021/acs.jpclett.8b01976 |
18 |
ZHU Y, KONG X H, RHONE T D, et al. Systematic search for two-dimensional ferromagnetic materials. Physical Review Materials, 2018, 2 (8): 081001.
doi: 10.1103/PhysRevMaterials.2.081001 |
19 |
LU S, ZHOU Q H, GUO Y L, et al. Coupling a crystal graph multilayer descriptor to active learning for rapid discovery of 2D ferromagnetic semiconductors/half-metals/metals. Advanced Materials, 2020, 32 (29): 2002658.
doi: 10.1002/adma.202002658 |
20 |
JIANG P, WANG C, CHEN D C, et al. Stacking tunable interlayer magnetism in bilayer CrI3. Physical Review B, 2019, 99 (14): 144401.
doi: 10.1103/PhysRevB.99.144401 |
21 | WANG C, ZHOU X Y, ZHOU L W, et al. Bethe-Slater-curve-like behavior and interlayer spin-exchange coupling mechanisms in two-dimensional magnetic bilayers. Physical Review B, 2020, 102 (2): 020402. |
22 |
MAY A F, OVCHINNIKOV D, ZHENG Q, et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano, 2019, 13 (4): 4436- 4442.
doi: 10.1021/acsnano.8b09660 |
23 | KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, (54): 11169- 11186. |
24 | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1997, 78 (7): 1396- 1396. |
25 |
DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study . Physical Review B, 1998, 57 (3): 1505- 1509.
doi: 10.1103/PhysRevB.57.1505 |
26 |
ANISIMOV V V, ZAANEN J, ANDERSEN O K. Band theory and mott insulators: Hubbard U instead of stoner I . Physical Review B, 1991, 44 (3): 943- 954.
doi: 10.1103/PhysRevB.44.943 |
27 |
LI X, YANG J. CrXTe3(X = Si, Ge) nanosheets: Two dimensional intrinsic ferromagnetic semiconductors . Journal of Materials Chemistry C, 2014, 2 (34): 7071- 7076.
doi: 10.1039/C4TC01193G |
28 |
DONG L, KUMAR H, ANASORI B, et al. Rational design of two-dimensional metallic and semiconducting spintronic materials based on ordered double-transition-metal MXenes. Journal of Physical Chemistry Letters, 2017, 8 (2): 422- 428.
doi: 10.1021/acs.jpclett.6b02751 |
29 |
MONKHORST H J, PACK J D. Special points for brillouin-zone integrations. Physical Review B, 1976, 13 (12): 5188- 5192.
doi: 10.1103/PhysRevB.13.5188 |
30 |
TOGO A, TANAKA I. First principles phonon calculations in materials science. Scripta Materialia, 2015, 108, 1- 5.
doi: 10.1016/j.scriptamat.2015.07.021 |
31 | BARONI S, GIRONCOLI S D, CORSO A D, et al. Phonons and related properties of extended systems from density functional perturbation theory. Review of Modern Physics, 2001, (73): 515- 562. |
32 |
GOODENOUGH J B. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Physical Review, 1955, 100 (2): 564- 573.
doi: 10.1103/PhysRev.100.564 |
33 |
ANDERSON P W. New approach to the theory of superexchange interactions. Physical Review, 1959, 115 (1): 2- 13.
doi: 10.1103/PhysRev.115.2 |
[1] | Wenjie DING, Wenhui XIE. Research on calculation of two-dimensional transition metal chalcogenides compounds MX2-MX-MX2 (M = V, Cr, Mn, and Fe; X = S, Se, and Te) [J]. Journal of East China Normal University(Natural Science), 2024, 2024(3): 45-53. |
[2] | Wei ZHAO, Qinghong YUAN. Bandgap tuning of C3N: A first-principles study [J]. Journal of East China Normal University(Natural Science), 2022, 2022(4): 114-119. |
[3] | Meng FEI, Wei XIE. Electric field modulated photoluminescence from WS2 monolayers [J]. Journal of East China Normal University(Natural Science), 2021, 2021(1): 137-143. |
[4] | SHEN Yu-hao, TANG Zheng, PENG Wei. A negatively charged VSiON center for implementation as qubit [J]. Journal of East China Normal University(Natural Sc, 2017, 2017(2): 97-106. |
[5] | ZHANG Xian-hui,CHEN Zhen-lian,CHEN Xiao-bo, LI Jun. Characterization of and insight into the electrochemistry of MoS2 [J]. Journal of East China Normal University(Natural Sc, 2015, 2015(3): 105-115. |
[6] | ZHOU Li-min;ZHENG Xiang-min;WANG Hui;WANG Xiao-yong;HUANG Dong-feng;SONG Lian-huan;REN Shao-fang. Magnetic properties of sediments in the middle and lower reaches of the Yangtze River [J]. Journal of East China Normal University(Natural Sc, 2008, 2008(6): 24-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||