Journal of East China Normal University(Natural Science) ›› 2022, Vol. 2022 ›› Issue (5): 165-183.doi: 10.3969/j.issn.1000-5641.2022.05.014
• Spatio-temporal Data Analysis and Intelligent Optimization Theory for Logistics • Previous Articles Next Articles
Xiaobian MIAO1, Jiajun LIAO1, Huajie MEI2, Chong FENG1, Jiali MAO1,*()
Received:
2022-07-10
Online:
2022-09-25
Published:
2022-09-26
Contact:
Jiali MAO
E-mail:jlmao@dase.ecnu.edu.cn
CLC Number:
Xiaobian MIAO, Jiajun LIAO, Huajie MEI, Chong FENG, Jiali MAO. Truck capacity prediction based on self-attention mechanism in the bulk logistic industry[J]. Journal of East China Normal University(Natural Science), 2022, 2022(5): 165-183.
Table 1
Description of features"
特征类型 | 特征名称 | 特征符号 | 特征描述 |
运力特征 | 车辆ID | | 承运车辆 |
历史平均停留次数 | | 承运车辆历史运输中平均停留的次数 | |
历史平均停留时间 | | 承运车辆历史运输中平均停留的时长 | |
流向客户特征 | 客户地平均路径距离 | | 客户地的多次历史运输中钢厂与客户地之间的路径距离 (km) |
客户收货时间 | | 客户开始收货的时间 (从轨迹数据中提取) , 取值范围为[0,23] | |
平均卸货时长 | | 到达该客户地之后所需的卸货时长 (车辆轨迹中提取历史运输中在该客户地附近的平均等待时长) | |
货物特征 | 货物品种 | | 运输的货物品种 |
是否卷类 | | 运输的货物是否为钢卷, 取值范围{0,1}, 其中0表示否, 1表示是 | |
时间特征 | 出发时间 | | 运输开始小时, 取值范围为[0,23] |
出发日期 | | 运输开始日期, 取值范围为[1,31] | |
车辆历史平均返程时间 | | 承运车辆历史运输中返程所需的平均时长 | |
车辆历史平均运输周期 | | 承运车辆历史运输中平均运输周期 (两次连续运输之间的时间间隔) | |
环境特征 | 天气 | | 出发时间后3 d内是否下雨, 取值范围{0,1}, 其中0表示否, 1表示是 |
Table 2
Effect of attribute component on the accessibility prediction"
评价指标 | 无车辆特征 | 无货物特征 | 无终点特征 | 无时间特征 | 无环境特征 | 全量特征 |
| 0.8247 | 0.753 0 | 0.7518 | 0.7353 | 0.7529 | 0.7765 |
| 0.4413 | 0.3711 | 0.3661 | 0.331 0 | 0.4099 | 0.4002 |
| 0.1718 | 0.329 0 | 0.4375 | 0.4591 | 0.3888 | 0.4814 |
| 0.2473 | 0.3487 | 0.3986 | 0.3846 | 0.3990 | 0.4371 |
1 | ZHOU W, YANG Y, ZHANG Y, et al. Deep flexible structure spatial-temporal model for taxi capacity prediction. Knowledge-Based Systems, 2020, 205, 106286. |
2 | WONG R C P, SZETO W Y, WONG S C. A two-stage approach to modeling vacant taxi movements. Transportation Research Procedia, 2015, (7): 147- 163. |
3 | JINDAL I, QIN Z W, CHEN X W, et al. A unified neural network approach for estimating travel time and distance for a taxi trip [EB/OL]. (2017-10-12)[2022-06-22]. https://arxiv.org/pdf/1710.04350.pdf |
4 | LI Y G, FU K, WANG Z, et al. Multi-task representation learning for travel time estimation [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2018: 1695-1704. |
5 | WANG H J, TANG X F, KUO Y H, et al. A simple baseline for travel time estimation using large-scale trip data. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10 (2): 19. |
6 | YANG Z C, YANG D Y, DYER C, et al. Hierarchical attention networks for document classification [C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016: 1480-1489. |
7 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural Computation, 1997, 9 (8): 1735- 1780. |
8 | KAMARIANAKIS Y, PRASTACOS P. Space-time modeling of traffic flow. Computers and Geosciences, 2005, 31 (2): 119- 133. |
9 | CASTRO-NETO M, JEONG Y S, JEONG M K, et al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Systems with Applications, 2009, 36 (3): 6164- 6173. |
10 | LESHEM G, RITOV Y. Traffic flow prediction using adaboost algorithm with random forests as a weak learner [J]. International Journal of Electrical and Computer Engineering, 2007, 2(2): 111-116. |
11 | ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal residual networks for citywide crowd flows prediction [C]// 31st AAAI Conference on Artificial Intelligence. 2017: 1655-1661. |
12 | WANG D, CAO W, LI J, et al. DeepSD: Supply-demand prediction for online car-hailing services using deep neural networks [C]// 2017 IEEE 33rd International Conference on Data Engineering (ICDE). IEEE, 2017: 243-254. DOI: 10.1109/ICDE.2017.83. |
13 | KE J T, YANG H, ZHENG H Y, et al. Hexagon-based convolutional neural network for supply-demand forecasting of ride-sourcing services. IEEE Transactions on Intelligent Transportation Systems, 2019, 20 (11): 4160- 4173. |
14 | JENELIUS E, KOUTSOPOULOS H N. Travel time estimation for urban road networks using low frequency probe vehicle data. Transportation Research Part B: Methodological, 2013, 53, 64- 81. |
15 | WANG Z, FU K, YE J P. Learning to estimate the travel time [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2018: 858-866. |
16 | YAN S, CHEN X, HUO R, et al. Learning to build user-tag profile in recommendation system [C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. ACM, 2020: 2877-2884. |
17 | BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 1994, 5 (2): 157- 166. |
18 | WU C H, HO J M, LEE D T. Travel-time prediction with support vector regression. IEEE Transactions on Intelligent Transportation Systems, 2004, 5 (4): 276- 281. |
19 | BREIMAN L. Random forests. Machine Learning, 2001, 45 (1): 5- 32. |
20 | WANG D, ZHANG J B, CAO W, et al. When will you arrive? Estimating travel time based on deep neural networks [C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2018: 2500-2507. |
21 | GUO G D, WANG H, BELL D, et al. kNN model-based approach in classification [C]// On the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, OTM 2003, Lecture Notes in Computer Science, vol 2888. Berlin: Springer, 2003: 986-996. |
22 | 朱军, 胡文波. 贝叶斯机器学习前沿进展综述. 计算机研究与发展, 2015, 52 (1): 16- 26. |
23 | FRIEDMAN J H. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 2001, 1189- 1232. |
24 | 王黎明, 王连, 杨楠. 应用时间序列分析 [M]. 上海: 复旦大学出版社, 2008. |
[1] | Chengyu ZHANG, Jiayi ZHU, Yihao HUANG, Di YANG, Jianwen LI, Weikai MIAO, Di YAN, Bin GU, Naijun ZHAN, Geguang PU. Machine-learning-based model checker performance prediction [J]. Journal of East China Normal University(Natural Science), 2024, 2024(4): 18-29. |
[2] | Jie CHEN, Wenyi SHEN, Wenyu WU, Jiali MAO. Method for improving the quality of trajectory data for riding-map inference [J]. Journal of East China Normal University(Natural Science), 2023, 2023(6): 14-27. |
[3] | Zhaoyang WU, Jiali MAO. Research on travel time prediction based on neural network [J]. Journal of East China Normal University(Natural Science), 2023, 2023(2): 106-118. |
[4] | Yiming YU, Yuchen HONG, Ye WANG, Qiwen DONG. Design of experimental data governance module for chemical material formulation [J]. Journal of East China Normal University(Natural Science), 2022, 2022(5): 1-13. |
[5] | Jiling LI, Baolin LI, Songru YAN. Research on user behavior portrait and subject mining in the express logistics field during Coronavirus epidemic [J]. Journal of East China Normal University(Natural Science), 2022, 2022(5): 100-114. |
[6] | Xiao PAN, Dongna LU, Shuhai WANG. Capacitated route planning for supermarket distribution based on order splitting [J]. Journal of East China Normal University(Natural Science), 2022, 2022(5): 147-164. |
[7] | Tao ZOU, Rongtao QIAN, Jiali MAO. Indexing and query technology for steel logistic data [J]. Journal of East China Normal University(Natural Science), 2022, 2022(5): 195-207. |
[8] | Qing SUN, Guanyu LIANG, Yanjun WU, Bin WU, Chunqi TIAN, Wei WANG. Data-driven open source software supply chain maintenance risk analysis method [J]. Journal of East China Normal University(Natural Science), 2022, 2022(5): 90-99. |
[9] | Xin GONG, Lihua XU, Liang DOU, Ruixiang ZHAO. Redundancy measurement and reduction of automated tests in financial technology [J]. Journal of East China Normal University(Natural Science), 2022, 2022(4): 43-55. |
[10] | Ping YU, Huiqi HU, Weining QIAN. Research on multi-objective cargo allocation based on an improved genetic algorithm [J]. Journal of East China Normal University(Natural Science), 2021, 2021(5): 185-198. |
[11] | Xiaoqin MA, Xiaohe GUO, Yufeng XUE, Lin YANG, Yuanzhe CHEN. Data augmentation technology for named entity recognition [J]. Journal of East China Normal University(Natural Science), 2021, 2021(5): 14-23. |
[12] | JI Yu, HE Yi-xuan, WU Guo-qun, WU Min. On evaluation of Bessel functions of the first kind via Prony-like methods [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(6): 42-60. |
[13] | XIE Qing-cheng, MAO Jia-li, LIU Ting. Dynamic scheduling strategy for bicycle-sharing in cities [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(6): 88-102. |
[14] | SHEN Hang-jie, JU Sheng-gen, SUN Jie-ping. Performance prediction based on fuzzy clustering and support vector regression [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(5): 66-73,84. |
[15] | JIANG Qun, DAI Ge-nan, ZHANG Sen, GE You-ming, LIU Yu-bao. Optimal route search based on user preferences [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(5): 100-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||