Journal of East China Normal University(Natural Science) ›› 2024, Vol. 2024 ›› Issue (3): 27-35.doi: 10.3969/j.issn.1000-5641.2024.03.003
• Nuclear and High-Energy Physics • Previous Articles Next Articles
Zhiyi CUI, Jintao WU, Jianhong RUAN*()
Received:
2023-04-07
Online:
2024-05-25
Published:
2024-05-25
Contact:
Jianhong RUAN
E-mail:jhruan@phy.ecnu.edu.cn
CLC Number:
Zhiyi CUI, Jintao WU, Jianhong RUAN. Research on the muon excess in ultrahigh-energy cosmic ray of extensive air-showers[J]. Journal of East China Normal University(Natural Science), 2024, 2024(3): 27-35.
Table 2
Production ratio of strange quarks to light quarks with different ${k}_{\rm{c}}$"
R | |||
1.7 | 2.8 | 4.2 | |
1.3 | 2.0 | 2.9 | |
1.1 | 1.6 | 2.1 |
1 | ABU-ZAYYAD T, BELOV K, BIRD J D, et al.. Evidence for changing of cosmic ray composition between 1017 and 1018 eV from multicomponent measurements. Physical Review Letters, 2000, 84(19), 4276- 4279. |
2 | BOGDANOV A G, GROMUSHKIN D M, KOKOULIN R P, et al.. Investigation of the properties of the flux and interaction of ultrahigh-energy cosmic rays by the method of local-muon-density spectra. Physics of Atomic Nuclei, 2010, 73, 1852- 1869. |
3 | ENGEL R. Test of hadronic interaction models with data from the Pierre Auger Observatory [EB/OL]. (2007-06-13)[2023-03-01]. https://arxiv.org/abs/0706.1921. |
4 | ABBASI R U, ABE M, ABU-ZAYYAD T, et al.. Study of muons from ultrahigh energy cosmic ray air showers measured with the Telescope array experiment. Physical Review D, 2018, 98 (2): 022002. |
5 | BOGDANOV A G, KOKOULIN R P, MANNOCCHI G, et al.. Investigation of very high energy cosmic rays by means of inclined muon bundles. Astroparticle Physics, 2018, 98, 13- 20. |
6 | FOMIN Y A, KALMYKOV N N, KARPIKOV I S, et al.. No muon excess in extensive air showers at 100–500 PeV primary energy: EAS–MSU results. Astroparticle Physics, 2017, 92, 1- 6. |
7 | GONZALEZ J G. Measuring the muon content of air showers with IceTop [C]// EPJ Web of Conferences. [S.l.]: EDP Sciences, 2015, 99: 06002. |
8 | APEL W D, ARTEAGA-VELÁZQUEZ J C, BEKK K, et al.. Probing the evolution of the EAS muon content in the atmosphere with KASCADE-Grande. Astroparticle Physics, 2017, 95, 25- 43. |
9 | DEMBINSKI H P, ARTEAGA-VELÁZQUEZ J C, CAZON L, et al. Report on tests and measurements of hadronic interaction properties with air showers [C]// EPJ Web of Conferences. [S.l.]: EDP Sciences, 2019, 210: 02004. |
10 | CAZON L. Working group report on the combined analysis of muon density measurements from eight air shower experiments [EB/OL]. (2020-01-08)[2023-03-01]. https://arxiv.org/abs/2001.07508. |
11 | AAB A, ABREU P, AGLIETTA M, et al.. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events. Physical Review D, 2015, 91 (3): 032003. |
12 | AAB A, ABREU P, AGLIETTA M, et al.. Testing hadronic interactions at ultrahigh energies with air showers measured by the Pierre Auger Observatory. Physical Review Letters, 2016, 117 (19): 192001. |
13 | BELLIDO J A, CLAY R W, Kalmykov N N, et al.. Muon content of extensive air showers: Comparison of the energy spectra obtained by the Sydney University Giant Air-shower Recorder and by the Pierre Auger Observatory. Physical Review D, 2018, 98 (2): 023014. |
14 | ALBRECHT J, CAZON L, DEMBINSKI H, et al. The Muon Puzzle in air showers and its connection to the LHC [J/OL]. Proceedings of Science, 2021, ICRC2021. https://pos.sissa.it/395/037/pdf. |
15 | D’ENTERRIA D, PIEROG T, SUN G H.. Impact of QCD jets and heavy-quark production in cosmic-ray proton atmospheric showers up to 1020 eV. The Astrophysical Journal, 2019, 874 (2): 152. |
16 | ANCHORDOQUI L A, GOLDBERG H, WEILER T J.. Strange fireball as an explanation of the muon excess in Auger data. Physical Review D, 2017, 95 (6): 063005. |
17 | ANCHORDOQUI L A, CANAL C G, SCIUTTO S J, et al.. Through the looking-glass with ALICE into the quark-gluon plasma: A new test for hadronic interaction models used in air shower simulations. Physics Letters B, 2020, 810, 135837. |
18 | BAUR S, DEMBINSKI H, PERLIN M, et al.. Core-corona effect in hadron collisions and muon production in air showers. Physical Review D, 2023, 107 (9): 094031. |
19 | ALVAREZ-MUNIZ J, CAZON L, CONCEIÇÃO R, et al. Muon production and string percolation effects in cosmic rays at the highest energies [EB/OL]. (2012-09-28)[2023-03-01]. https://arxiv.org/abs/1209.6474. |
20 | FARRAR G R, ALLEN J D. A new physical phenomenon in ultra-high energy collisions [C]// EPJ Web of Conferences. [S.l.]: EDP Sciences, 2013, 53: 07007. |
21 | BROOIJMANS G, SCHICHTEL P, SPANNOWSKY M.. Cosmic ray air showers from sphalerons. Physics Letters B, 2016, 761, 213- 218. |
22 | ALLEN J, FARRAR G. Testing models of new physics with UHE air shower observations [EB/OL]. (2013-07-26)[2023-03-01]. https://arxiv.org/abs/1307.7131. |
23 | FARRAR G R, ALLEN J. Evidence for some new physical process in ultrahigh-energy collisions [C]// EPJ Web of Conferences. [S.l.]: EDP Sciences, 2013, 52: 07005. |
24 | ACHARYA S, ADAMOVÁ D, ADHYA S P, et al.. Multiplicity dependence of (multi-) strange hadron production in proton-proton collisions at $\sqrt {s} $ = 13 TeV. The European Physical Journal C, 2020, 80, 167. |
25 | ANCHORDOQUI L A, CANAL C G, KLING F, et al.. An explanation of the muon puzzle of ultrahigh-energy cosmic rays and the role of the forward physics facility for model improvement. Journal of High Energy Astrophysics, 2022, 34, 19- 32. |
26 | ZHU W, SHEN Z Q, RUAN J H.. Can a chaotic solution in the QCD evolution equation restrain high-energy collider physics?. Chinese Physics Letters, 2008, 25 (10): 3605- 3608. |
27 | ZHU W, SHEN Z Q, RUAN J H.. The chaotic effects in a nonlinear QCD evolution equation. Nuclear Physics B, 2016, 911, 1- 35. |
28 | ZHU W, LAN J S.. The gluon condensation at high energy hadron collisions. Nuclear Physics B, 2017, 916, 647- 668. |
29 | ZHU W, CHEN Q H, CUI Z Y, et al.. The gluon condensation in hadron collisions. Nuclear Physics B, 2022, 984, 115961. |
30 | ZHU W, LAN J S, RUAN J H.. The gluon condensation in high energy cosmic rays. International Journal of Modern Physics E, 2018, 27 (9): 1850073. |
31 | LIU P, RUAN J H.. A possible connection of the broken power-law between electron-and proton-spectra in cosmic rays. International Journal of Modern Physics E, 2019, 28 (9): 1950073. |
32 | ZHENG Z C, CUI Z Y, RUAN J H.. Research on the structure of cosmic-ray electron and positron fluxes in GeV–TeV energy range. International Journal of Modern Physics E, 2022, 31 (1): 2250012. |
33 | ZHU W, ZHENG Z C, LIU P, et al.. Looking for the possible gluon condensation signature in sub-TeV gamma-ray spectra: From active galactic nuclei to gamma ray bursts. Journal of Cosmology and Astroparticle Physics, 2021, (1): 038. |
34 | ZHU W, LIU P, RUAN J H, et al.. Anomalous bremsstrahlung and the structure of cosmic-ray electron–positron fluxes at the GeV–TeV energy range. The Astrophysical Journal, 2020, 896 (2): 106. |
35 | ZHU W, LIU P, RUAN J H, et al.. Possible evidence for the gluon condensation effect in cosmic positron and gamma-ray spectra. The Astrophysical Journal, 2020, 889 (2): 127. |
36 | ZHU W, LIU P, RUAN J H, et al.. The gluon condensation effect in the cosmic hadron spectra. Journal of Cosmology and Astroparticle Physics, 2020, (9): 011. |
37 | RUAN J H, ZHENG Z C, ZHU W.. Exploring the possible gluon condensation signature in gamma-ray emission from pulsars. Journal of Cosmology and Astroparticle Physics, 2021, 2021 (8): 065. |
38 | GRIBOV V N, LIPATOV L N. Deep inelastic ep-Scattering in a perturbation theory [R]. Institute of Nuclear Physics, Leningrad, 1972. |
39 | DOKSHITZER Y L.. Calculation of the structure functions for deep inelastic scattering and e+e– annihilation by perturbation theory in quantum chromodynamics. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1977, 73, 1216- 1240. |
40 | ALTARELLI G, PARISI G.. Asymptotic freedom in parton language. Nuclear Physics B, 1977, 126 (2): 298- 318. |
41 | LIPATOV L N.. Reggeization of the vector meson and the vacuum singularity in nonabelian gauge theories. Yadernaya Fizika, 1976, 23 (3): 642- 656. |
42 | FADIN V S, KURAEV E A, LIPATOV L N.. On the Pomeranchuk singularity in asymptotically free theories. Physics Letters B, 1975, 60 (1): 50- 52. |
43 | KURAEV E A, LIPATOV L N, FADIN V S.. Multireggeon processes in the Yang-Mills theory. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1976, 71, 840- 855. |
44 | KURAEV E A, LIPATOV L N, FADIN V S.. The Pomeranchuk singularity in nonabelian gauge theories. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1977, 72, 377- 389. |
45 | BALITSKY Y Y, LIPATOV L N.. The Pomeranchuk singularity in quantum chromodynamics. Soviet Journal of Nuclear Physics-Ussr, 1978, 28 (6): 822- 829. |
46 | GRIBOV L V, LEVIN E M, RYSKIN M G.. Semihard processes in QCD. Physics Reports, 1983, 100 (1/2): 1- 150. |
47 | MUELLER A H, QIU J W.. Gluon recombination and shadowing at small values of x. Nuclear Physics B, 1986, 268 (2): 427- 452. |
48 | BALITSKY I.. Operator expansion for high-energy scattering. Nuclear Physics B, 1996, 463 (1): 99- 157. |
49 | KOVCHEGOV Y V.. Small-x F2 structure function of a nucleus including multiple Pomeron exchanges. Physical Review D, 1999, 60 (3): 034008. |
50 | KOVCHEGOV Y V.. Unitarization of the BFKL pomeron on a nucleus. Physical Review D, 2000, 61 (7): 074018. |
51 | RAFELSKI J, MÜLLER B.. Strangeness production in the quark-gluon plasma. Physical Review Letters, 1982, 48 (16): 1066- 1069. |
52 | CANAL C A G, SCIUTTO S J, TARUTINA T.. Testing hadronic-interaction packages at cosmic-ray energies. Physical Review D, 2009, 79 (5): 054006. |
53 | FENG X T, ZHANG H Y, FENG C F, et al. Measuring the attenuation length of muon number in the air shower with muon detectors of 3/4 LHAASO array [EB/OL]. (2022-10-05)[2023-03-01]. https://arxiv.org/abs/2207.12117. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||