Journal of East China Normal University(Natural Science) ›› 2021, Vol. 2021 ›› Issue (2): 54-62.doi: 10.3969/j.issn.1000-5641.2021.02.006
• Estuary and Coastal Research • Previous Articles Next Articles
Yiping ZHU1(), Xiaofei LI2, Xia LIANG3,*()
Received:
2020-03-16
Online:
2021-03-25
Published:
2021-04-01
Contact:
Xia LIANG
E-mail:35843332@qq.com;xliang@sklec.ecnu.edu.cn
CLC Number:
Yiping ZHU, Xiaofei LI, Xia LIANG. Content and ecological risk assessment of heavy metals in the surface sediments of Qingcaosha Reservoir in Shanghai[J]. Journal of East China Normal University(Natural Science), 2021, 2021(2): 54-62.
Table 3
Content of heavy metals in the sediments of the Qingcaosha Reservoir 单位: mg·kg–1"
Cu | Zn | Pb | Cr | Cd | As | Hg | 总含量 | ||
2014年夏季 | 样点1 | 40.00 | 80.03 | 39.41 | 86.14 | 0.095 | 18.05 | 0.075 | 264 |
样点2 | 20.65 | 58.91 | 24.36 | 69.35 | 0.12 | 9.58 | 0.012 | 183 | |
样点3 | 50.23 | 92.31 | 38.16 | 110.45 | 0.11 | 27.68 | 0.014 | 319 | |
样点4 | 40.05 | 110.35 | 46.36 | 124.34 | 0.096 | 23.62 | 0.030 | 345 | |
样点5 | 20.18 | 62.15 | 21.32 | 78.35 | 0.185 | 11.68 | 0.010 | 194 | |
2015年夏季 | 样点1 | 40.36 | 78.93 | 40.12 | 79.13 | 0.14 | 20.12 | 0.055 | 259 |
样点2 | 21.04 | 62.36 | 39.26 | 77.54 | 0.13 | 19.54 | 0.038 | 220 | |
样点3 | 41.42 | 58.91 | 21.66 | 62.46 | 0.08 | 14.31 | 0.020 | 199 | |
样点4 | 37.68 | 99.62 | 41.56 | 87.78 | 0.16 | 22.3 | 0.035 | 289 | |
样点5 | 21.42 | 77.65 | 38.15 | 76.24 | 0.10 | 16.02 | 0.048 | 230 | |
平均值 | 33.30 | 78.12 | 35.04 | 85.18 | 0.12 | 18.29 | 0.034 | 250 |
Table 4
Single and comprehensive potential ecological risk indexes of sediment heavy metals in the Qingcaosha Reservoir"
ECu | EZn | EPb | ECr | ECd | EAs | EHg | ERI | ||
2014年8月 | 样点1 | 8.44 | 1.05 | 8.53 | 2.27 | 19.00 | 18.80 | 54.55 | 113 |
样点2 | 4.36 | 0.77 | 5.27 | 1.83 | 24.00 | 9.98 | 8.73 | 55 | |
样点3 | 10.60 | 1.21 | 8.26 | 2.91 | 22.00 | 28.83 | 10.18 | 84 | |
样点4 | 8.45 | 1.45 | 10.03 | 3.28 | 19.20 | 24.60 | 21.82 | 89 | |
样点5 | 4.26 | 0.82 | 4.61 | 2.07 | 37.00 | 12.17 | 7.27 | 68 | |
2015年7月 | 样点1 | 8.51 | 1.04 | 8.68 | 2.09 | 28.00 | 20.96 | 40.00 | 109 |
样点2 | 4.44 | 0.82 | 8.50 | 2.05 | 26.00 | 20.35 | 27.64 | 90 | |
样点3 | 8.74 | 0.77 | 4.69 | 1.65 | 16.00 | 14.91 | 14.55 | 61 | |
样点4 | 7.95 | 1.31 | 9.00 | 2.32 | 32.00 | 23.23 | 25.45 | 101 | |
样点5 | 4.52 | 1.02 | 8.26 | 2.01 | 20.00 | 16.69 | 34.91 | 87 | |
平均值 | 7.03 | 1.03 | 7.58 | 2.25 | 24.32 | 19.05 | 24.51 | 86 |
Table 5
Comparison of heavy metals content in the sediments of the Qingcaosha Reservoir and the Changjiang Estuary 单位: mg·kg–1"
区域名称 | Cu | Zn | Pb | Cr | Cd | As | Hg | 文献来源 |
长江口沉积物背景值 | 22.80 | 73.70 | 21.80 | 74.10 | 0.13 | 9.20 | 0.05 | [ |
青草沙水库 | 33.30 | 78.12 | 35.04 | 85.18 | 0.12 | 18.29 | 0.03 | 本研究 |
陈行水库/黄浦江 水源地 | 35.30 (13.2, 146.72) | 70.50 (21.37, 110) | 27 (4.00, 39.03) | 0.34 (0.021, 0.92) | 0.16 (0.052, 0.3) | [ | ||
青草沙水库/ 长兴岛/长江口* | 29.48 ± 6.17 (17.24, 36.91) | 91.33 ± 6.87 (77.61, 98.72) | 23.08 ± 3.99 (15.85, 29.64) | 54.20 ± 40.79 (13.41, 94.98) | 1.10 ± 0.54 (0.14, 2.01) | 12.69 | 0.10 ± 0.04 (0.06, 0.14) | [ |
长江三角洲近岸 及经济区* | 59.24 ± 38.77 (20.47, 98.00) | 65.08 ± 5.51 (59.57, 70.59) | 80.10 ± 57.81 (22.29, 137.90) | 75.14 | 81.57 ± 41.67 (39.90, 123.23) | 9.40 | 41.86 | [ |
Table 6
Comparison of potential ecological risk indexes of sediment heavy metals in the Qingcaosha Reservoir and the Changjiang Estuary, the Changjiang River Delta, and other reservoirs"
水库名称 | ECu | EZn | EPb | ECr | ECd | EAs | EHg | ERI | 文献来源 |
青草沙水库* | 7.03 ± 0.75 (4.26, 10.60) | 1.03 ± 0.08 (0.77, 1.45) | 7.58 ± 0.62 (4.61, 10.03) | 2.25 ± 0.16 (1.65, 3.28) | 24.32 ± 2.07 (16.00, 37.00) | 19.05 ± 1.83 (9.98, 28.83) | 24.51 ± 4.85 (7.27, 54.55) | 86 ± 6 (45, 146) | 本研究 |
陈行水库/黄浦江水源地 | 6.2 | 0.84 | 5.37 (4.15, 6.59) | 48.96 (27.72, 70.2) | 47.80 (45.19, 50.4) | 79.5 | [ | ||
长江口/青草沙 水库/长兴岛* | 6.46 ± 1.35 (3.78, 8.09) | 1.24 ± 0.09 (1.05, 1.34) | 5.29 ± 0.92 (3.64, 6.80) | 2.56 | 255 ± 125 (32.31, 464) | 13.79 | 80.78 ± 31.37 (49.41, 112) | 327 ± 138 (114, 584) | [ |
长江三角洲近岸及经济区* | 12.99 ± 8.50 (4.49, 21.49) | 0.88 ± 0.07 (0.81, 0.96) | 18.37 ± 13.26 (5.11, 31.63) | 2.03 | 18822 ± 9615 (9208, 28438) | 10.22 | 32831 | 35277 ± 26 (9262, 61292) | [ |
大朝山水库* | 4.54 ± 0.55 (3.99, 5.09) | 0.71 ± 0.09 (0.62, 0.80) | 3.96 ± 0.02 (3.94, 3.98) | 1.37 ± 0.11 (1.26, 1.48) | 37.65 ± 8.55 (29.10, 46.20) | 27.99 ± 0.11 (27.88, 28.09) | 76 ± 9 (67, 85) | [ | |
漫湾水库* | 4.55 ± 0.31 (4.24, 4.85) | 0.97 ± 0.03 (0.94, 1.00) | 4.26 ± 0.58 (3.68, 4.84) | 1.11 ± 0.13 (0.98, 1.23) | 52.95 ± 5.85 (47.10, 58.80) | 30.04 ± 1.83 (28.21, 31.87) | 94 ± 8 (85, 103) | [ | |
官厅水库* | 9.66 ± 1.06 (5.94, 12.00) | 1.81 ± 0.20 (1.04, 2.07) | 6.80 ± 0.81 (3.73, 8.49) | 4.34 ± 0.37 (2.90, 4.99) | 51.14 ± 8.77 (35.30, 78.80) | 74 ± 11 (49, 106) | [ | ||
山美水库 | 7.12 (3.41, 13.80) | 0.53 (0.24, 1.10) | 6.54 (3.22, 14.95) | 0.59 (0.33, 1.72) | 87.95 (54, 142) | 7.96 (3.15, 15.14) | 110.71 | [ | |
丹江口水库 | 3.48 | 3.12 | 2.96 | 1.83 | 173 | 185 | [ | ||
密云水库 | 9.29 | 1.78 | 4.29 | 3.32 | 693 | 6.98 | 120 | 838 | [ |
漳泽水库 | 9.64 | 1.46 | 13.45 | 547 | 5.65 | 627 | 1204 | [ |
1 |
李佳璐, 姜霞, 王书航, 等. 丹江口水库沉积物重金属形态分布特征及其迁移能力. 中国环境科学, 2016, 36 (4): 1207- 1217.
doi: 10.3969/j.issn.1000-6923.2016.04.037 |
2 | 李晋鹏, 成登苗, 赵爱东, 等. 澜沧江梯级水坝库区沉积物重金属和营养盐污染特征及评价. 环境科学学报, 2019, 39 (8): 2791- 2799. |
3 | 韦丽丽, 周琼, 谢从新, 等. 三峡库区重金属的生物富集、生物放大及其生物因子的影响. 环境科学, 2016, 37 (1): 325- 334. |
4 | 张文慧, 许秋瑾, 胡小贞, 等. 山美水库沉积物重金属污染状况及风险评价. 环境科学研究, 2016, 29 (7): 1006- 1013. |
5 |
VAROL M, SÜNBÜL M R. Organochlorine pesticide, antibiotic and heavy metal residues in mussel, crayfish and fish species from a reservoir on the Euphrates River, Turkey. Environmental Pollution, 2017, 230, 311- 319.
doi: 10.1016/j.envpol.2017.06.066 |
6 |
FRÉMION F, COURTIN-NOMADE A, BORDAS F, et al. Impact of sediments resuspension on metal solubilization and water quality during recurrent reservoir sluicing management. Science of the Total Environment, 2016, 562, 201- 215.
doi: 10.1016/j.scitotenv.2016.03.178 |
7 | 王闯, 单保庆, 唐文忠, 等. 官厅水库主要入库河流(洋河)表层沉积物重金属污染特征及风险水平. 环境科学学报, 2017, 37 (5): 1632- 1640. |
8 |
ZHU H, BING H, WU Y, et al. The spatial and vertical distribution of heavy metal contamination in sediments of the Three Gorges Reservoir determined by anti-seasonal flow regulation. Science of the Total Environment, 2019, 664, 79- 88.
doi: 10.1016/j.scitotenv.2019.02.016 |
9 | SHIKAZONO N, TATEWAKI K, MOHIUDDIN K, et al. Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Central Japan. Environmental Geochemistry and Health, 2012, 34 (1): 13- 26. |
10 |
孔明, 彭福全, 张毅敏, 等. 环巢湖流域表层沉积物重金属赋存特征及潜在生态风险评价. 中国环境科学, 2015, 35 (6): 1863- 1871.
doi: 10.3969/j.issn.1000-6923.2015.06.032 |
11 | 张伯镇, 王丹, 张洪, 等. 官厅水库沉积物重金属沉积通量及沉积物记录的生态风险变化规律. 环境科学学报, 2016, 36 (2): 458- 465. |
12 | 李冰, 王亚, 郑钊, 等. 丹江口水库调水前后表层沉积物营养盐和重金属时空变化. 环境科学, 2018, 39 (8): 3591- 3600. |
13 | 张茜, 冯民权, 郝晓燕. 漳泽水库沉积物重金属污染特征与生态风险评价. 环境工程, 2019, (1): 11- 17. |
14 | 匡帅, 保琦蓓, 康得军, 等. 典型小型水库表层沉积物重金属分布特征及生态风险. 湖泊科学, 2018, 30 (2): 336- 348. |
15 |
JHÉNELLE A W, JOHANN A. Evaluation of the elemental pollution status of Jamaican surface sediments using enrichment factor, geoaccumulation index, ecological risk and potential ecological risk index. Marine Pollution Bulletin, 2020, 157, 111288.
doi: 10.1016/j.marpolbul.2020.111288 |
16 | 陈明, 蔡青云, 徐慧, 等. 水体沉积物重金属污染风险评价研究进展. 生态环境学报, 2015, 24 (6): 1069- 1074. |
17 |
陈立, 陈蓓蓓, 张淑敏. 青草沙水库运行管理优化探索. 净水技术, 2013, 32 (3): 85- 88.
doi: 10.3969/j.issn.1009-0177.2013.03.020 |
18 |
袁建忠, 李杰. 青草沙水库库区流态及淤积分布特征研究. 城市道桥与防洪, 2012, (9): 181- 183.
doi: 10.3969/j.issn.1009-7716.2012.09.066 |
19 |
孙远军, 林卫青, 卢士强, 等. 青草沙水库底泥磷营养盐释放规律的初步研究. 环境科技, 2013, 26 (5): 18- 21.
doi: 10.3969/j.issn.1674-4829.2013.05.005 |
20 | 金晓丹, 吴昊, 陈志明, 等. 长江河口水库沉积物磷形态、吸附和释放特性. 环境科学, 2015, 36 (2): 448- 456. |
21 |
胡晓婷, 程吕, 林贤彪, 等. 沉积物硝酸盐异化还原过程的温度敏感性与影响因素——以长江口青草沙水库为例. 中国环境科学, 2016, 36 (9): 2624- 2632.
doi: 10.3969/j.issn.1000-6923.2016.09.011 |
22 | 徐聪. 典型河口水库痕量有机污染物赋存特征及其迁移转化模拟研究 [D]. 上海: 上海交通大学, 2018. |
23 | 吴雪飞, 倪奔. 青草沙水库底泥重金属含量分析与评价. 净水技术, 2018, 37 (S2): 5- 8. |
24 |
HAKANSON L. An ecological risk index for aquatic pollution control. Water Research, 1980, 14 (8): 975- 1001.
doi: 10.1016/0043-1354(80)90143-8 |
25 |
何中发. 长江口及近岸海域沉积物元素地球化学背景值. 上海国土资源, 2018, 39 (1): 75- 79.
doi: 10.3969/j.issn.2095-1329.2018.01.016 |
26 | 李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价. 环境科学, 2015, 36 (3): 1037- 1044. |
27 | 张志, 张润宇, 王立英, 等. 淡水沉积物中重金属生物有效性的研究进展. 地球与环境, 2020, 48 (3): 385- 394. |
28 | 乔敏敏, 季宏兵, 朱先芳, 等. 密云水库入库河流沉积物中重金属形态分析及风险评价. 环境科学学报, 2013, 33 (12): 3324- 3333. |
29 | 杨丹, 谢宗强, 樊大勇, 等. 三峡水库蓄水对消落带土壤Cu、Zn、Cr、Cd含量的影响. 自然资源学报, 2018, 33 (7): 1283- 1290. |
30 | 陈蓓蓓, 张淑敏, 朱建荣. 陈行水库底泥中重金属含量分析与评价. 中国给水排水, 2015, 31 (13): 68- 71. |
31 |
程晨, 陈振楼, 毕春娟, 等. 上海市黄浦江水源地重金属铅、镉多介质富集特征分析. 长江流域资源与环境, 2009, 18 (10): 948- 953.
doi: 10.3969/j.issn.1004-8227.2009.10.012 |
32 |
郑玲芳. 黄浦江水源地沉积物重金属潜在生态风险评价. 生态与农村环境学报, 2013, 29 (6): 762- 767.
doi: 10.3969/j.issn.1673-4831.2013.06.014 |
33 | 何中发, 杨守业, 赵宝成, 等. 长江口地区近1500年以来沉积物重金属含量变化及其对流域环境响应. 海洋地质与第四纪地质, 2019, 39 (2): 21- 30. |
34 |
许小丽, 周国亮, 丁井井, 等. 长兴岛潮间带表层沉积物污染状况及其潜在生态风险评价. 海洋通报, 2012, 31 (2): 223- 227.
doi: 10.3969/j.issn.1001-6392.2012.02.014 |
35 | 蔡晔, 林休休. 长江三角洲近岸水域表层沉积物重金属分布特征及其影响因子. 水土保持研究, 2017, 24 (3): 331- 338. |
36 | 刘珊珊, 张勇, 龚淑云, 等. 长江三角洲经济区海域沉积物重金属分布特征及环境质量评价. 海洋地质与第四纪地质, 2013, 33 (5): 63- 71. |
37 | 顾家伟. 长江三角洲潮滩重金属污染研究现状与趋势. 地球与环境, 2014, 42 (6): 801- 809. |
38 |
DAVIDSON C M, THOMAS R P, MCVEY S E, et al. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Analytica Chimica Acta, 1994, 291 (3): 277- 286.
doi: 10.1016/0003-2670(94)80023-5 |
39 |
LAING D, RINKLEBE G, VANDECASTEELE J, et al. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 2009, 407 (13): 3972- 3985.
doi: 10.1016/j.scitotenv.2008.07.025 |
40 |
陈松, 廖文卓, 许爱玉, 等. 长江口沉积物-铅的吸附动力学及环境影响. 台湾海峡, 1999, (2): 125- 130.
doi: 10.3969/j.issn.1000-8160.1999.02.002 |
41 | 李国平, 朱建荣. 2015—2017年枯季长江河口青草沙水库盐水入侵分析. 华东师范大学学报 (自然科学版), 2018, (2): 160- 169. |
[1] | Yang ZHA, Difang WANG, Chengjin CAO, Minsheng HUANG, Xing WANG, Bowen YU, Chang LIU, Haochen DU, Mengzhuo LI. Investigation of the environmental status of water at the Dalian Lake demonstration area in the Jinze water source area of Taipu River [J]. Journal of East China Normal University(Natural Science), 2021, 2021(4): 64-71. |
[2] | Yiping ZHU. Analysis of the characteristics of the Qingcaosha Reservoir direct saltwater intrusion from the open sea in the Changjiang Estuary [J]. Journal of East China Normal University(Natural Science), 2021, 2021(2): 21-29. |
[3] | Meng TONG, Maotian LI, Shujie NIU, Xiaoqiang LIU, Mudong LIN, Huiting GUO, Lijun HOU. Changes in chlorophyll and nutrients in reservoirs of the Changjiang River basin: The “biological filter” effect [J]. Journal of East China Normal University(Natural Science), 2021, 2021(2): 63-72. |
[4] | Jing HUANG, Tongtong ZHENG, Aihua WANG, Wenjing LI, Zhanghua WANG. Comparison of different extraction methods for alkaline earth metals and its implications: A case study of the surficial sediments from Ningbo Plain [J]. Journal of East China Normal University(Natural Science), 2021, 2021(2): 73-84. |
[5] | Rasheed ADESINA, Olusegun DADA, Yinusa ASIWAJU-BELLO, Zhiguo HE. Erodibility of cohesive sediments along the Nigerian transgressive mud coast: A preliminary experimental study [J]. Journal of East China Normal University(Natural Science), 2020, 2020(S1): 120-124. |
[6] | I. Mohamed ABDUALLAH M., Tangyan LIU. A review about tectonic and sedimentary input evolution of the Red Sea rifting basin [J]. Journal of East China Normal University(Natural Science), 2020, 2020(S1): 74-78. |
[7] | LU Peiyi, ZHU Jianrong, QIAN Weiwei, YUAN Lin. Numerical simulation of erosion and deposition at the water intake channel of the outer seawall sluice in the ecological restoration project area of Chongming Dongtan Bird Habitat [J]. Journal of East China Normal University(Natural Science), 2020, 2020(3): 43-54. |
[8] | WANG Zhengcheng, MAO Haitao, SHEN Jiwei, TANG Xin, CHEN Xiang. Analysis of water and sediment characteristics in the main tributaries of the Yangtze River and their associated influence factors [J]. Journal of East China Normal University(Natural Science), 2020, 2020(1): 126-138. |
[9] | WANG Shan, ZHU Jin, HE Yan, HUANG Min-sheng, ZHOU Yun-chang. Effect of sulfide on the denitrification potential of sediment in black-odor rivers [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(4): 156-164. |
[10] | YU Chen-di, HOU Li-jun, ZHENG Yan-ling, LIU Min, YIN Guo-yu, GAO Juan, LIU Cheng, CHANG Yong-kai. Community structure and gene expression analysis for nitrifier enrichment cultures [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(3): 164-173. |
[11] | WANG Hao-bin, YANG Shi-lun, YANG Hai-fei. A study of the surficial suspended sediment concentration in response to typhoons in the Yangtze Estuary [J]. Journal of East China Normal University(Natural Sc, 2019, 2019(2): 195-208. |
[12] | XU Yi-wen, HAN Jing, HE Yan, HUANG Min-sheng. A review of the effect of endogenous sulfur on the environmental behavior of phosphorus in sediment from polluted rivers and lakes [J]. Journal of East China Normal University(Natural Sc, 2018, 2018(6): 74-80. |
[13] | YU Ya-wen, DAI Zhi-jun, MEI Xue-fei, WANG Jie, WEI Wen. Dynamic characteristics and influencing mechanisms of suspended sediment discharge at the outlet of Dongting Lake [J]. Journal of East China Normal University(Natural Sc, 2018, 2018(4): 159-170. |
[14] | ZHOU Xiao-xiao, BI Chun-juan, WANG Meng, ZHOU Ya, CHEN Zhen-lou. Pollution effects of atmospheric deposition on heavy metals in leafy vegetables and its health risks [J]. Journal of East China Normal University(Natural Sc, 2018, 2018(2): 141-150. |
[15] | LI Guo-ping, ZHU Jian-rong. Analyses of saltwater intrusion at the water intake of Qingcaosha reservoir in the Changjiang Estuary in dry season from 2015 to 2017 [J]. Journal of East China Normal University(Natural Sc, 2018, 2018(2): 160-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||