In this study, we used negative ion photoelectron spectroscopy (NIPES) combined with quantum chemical calculation to explore the electronic structures, micro-solvation effect, and stabilization mechanism of two compounds, SO3– and HSO3–, that are readily abundant in the atmosphere. Vertical detachment energies of (3.31 ± 0.02) and (3.91 ± 0.02) eV and adiabatic detachment energies of (3.02 ± 0.05) and (3.56 ± 0.05) eV were measured for SO3– and HSO3–, respectively. These results are reproduceable when using a nuclear ensemble approach and Dyson orbitals in the calculation. The typical density of states method, however, cannot demonstrate the nuclear vibration effect, ionization probability, and orbital relaxation effect during the ionization process. We studied the micro-solvation effect of HSO3–·(H2O)n (n = 0 ~ 5) and found that system stability was enhanced by an increase in the surrounding water molecules, whereby electrostatic interaction played a dominant role and the induction effect made an increasingly important contribution. We believe this work will help improve the modeling of atmospheric sulfate aerosols and provide a scientific basis for the effective control of haze formation.